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a b s t r a c t

This paper describes the status of the 2008 edition of the HITRAN molecular
spectroscopic database. The new edition is the first official public release since the
2004 edition, although a number of crucial updates had been made available online
since 2004. The HITRAN compilation consists of several components that serve as input
for radiative-transfer calculation codes: individual line parameters for the microwave
through visible spectra of molecules in the gas phase; absorption cross-sections for
molecules having dense spectral features, i.e. spectra in which the individual lines are
not resolved; individual line parameters and absorption cross-sections for bands in the
ultraviolet; refractive indices of aerosols, tables and files of general properties associated
with the database; and database management software. The line-by-line portion of the
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database contains spectroscopic parameters for 42 molecules including many of their
isotopologues.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

This article describes the data that have been added, modified, or enhanced in the HITRAN (High Resolution
Transmission) compilation since the previous update of 2004 [1] (hereafter called HITRAN2004 in the text). The
compilation encompasses the HITRAN line-transition parameters, infrared cross-sections, UV (ultraviolet) line-by-line
parameters and cross-sections, aerosol refractive indices, and documentation. The file structure for the compilation
remains the same as the previous edition and can be seen in Fig. 1 of Ref. [1]. The compilation is available on an anonymous
ftp site. Instructions for accessing the database can be found in the HITRANweb site (http://www.cfa.harvard.edu/HITRAN).

The HITRAN database is the recognized international standard, used for a vast array of applications including terrestrial
and planetary atmospheric remote sensing, transmission simulations, fundamental laboratory spectroscopy studies,
industrial process monitoring, and pollution regulatory studies. An international HITRAN advisory committee, composed of
a dozen experts in the field of spectroscopy, has been established under the auspices of NASA. This committee reviews and
evaluates new data and makes recommendations for updates and replacements in the compilation.

Many recent developments have pushed the requirements of HITRAN in terms of accuracy and degree of completeness.
Among these developments one can cite the retrievals that various satellite remote-sensing missions are now capable of
due in part to the high signal-to-noise ratio of the spectra and to advances in retrieval algorithms. Notable satellite
spectrometer instrumentation includes MLS (Microwave Limb Sounder) [2] and TES (Tropospheric Emission Spectrometer)
[3] on the Aura platform, MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) [4] on ENVISAT, ACE-FTS
(Atmospheric Chemistry Experiment) [5] on SCISAT, AIRS (Atmospheric Infrared Sounder) [6] on Aqua, IASI (Infrared
Atmospheric Sounding Interferometer) [7] on MetOP-A, OCO (Orbiting Carbon Observatory) [8], and GOSAT (Greenhouse
gases Observing SATellite) [9]. These satellite instruments have put demands on HITRAN that include increased accuracy
(by almost an order of magnitude in some cases) for the basic parameters: line position in vacuum wavenumbers, n
(in cm!1), intensity of the line, S (in cm!1/(molecule cm!2)), and line-shape parameters.3 They also require more species,
additional molecular bands, and weak lines throughout the spectral region covered by HITRAN (microwave through UV).
In fact, the remote-sensing experiments have demonstrated that the basic Lorentz line-shape parameter for collisional
broadening used in HITRAN, from which it is possible to calculate the Voigt line profile, is not satisfactory in many cases.
To reduce the residuals between observation and simulation, it has often been necessary to invoke more sophisticated
non-Voigt line shape functions such as Rautian or Galatry [10] and line mixing.

Section 2 of this paper presents the most significant of the improvements featured in this newly updated edition of
HITRAN as it relates to the line-by-line parameters. Note that the line lists described here either include or supersede
intermediate updates that were placed on the HITRAN web site after HITRAN2004. The status of the infrared cross-sections,
sets of UV data, and the aerosol refractive indices of aerosols, are discussed in Sections 3–5.

2. Line-by-line parameters

This edition of HITRAN contains three new entries, methyl bromide (CH3Br), methyl cyanide (CH3CN), and
tetrafluoromethane (CF4). It is worth repeating that the number of transitions included in the database is limited by: (1)
a reasonable minimum cutoff in absorption intensity (based on the sensitivity of instruments that observe absorption over
extreme terrestrial atmospheric path lengths), (2) lack of sufficient experimental data, or (3) lack of calculated transitions.

The format for the line-by-line portion of the compilation remains the same as in the previous edition (see Table 1 of
Ref. [1]), except that the self-broadened half-width parameter has now been written in a Fortran format of F5.3 rather than
F5.4. The latter distinction is not significant unless the user employs the Fortran write function.

The molecules for which data are included in the line-by-line portion of HITRAN are mostly composed of small numbers
of atoms and have low molecular weights. Large polyatomic molecules have many normal modes of vibration and ‘‘heavy’’
species have fundamentals at very low wavenumbers. For three of the molecules in this edition of HITRAN, SF6, ClONO2, and
CF4, we have kept the parameters for this edition in a supplemental folder (see Fig. 1 of Ref. [1]). The rationale for this is that
the line-by-line parameters represent only a few bands, and neglect many significant hot bands for the ‘‘heavy’’ species. For
most applications, the IR cross-sections of these molecules in the HITRAN compilation provide a better simulation.
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The user of the HITRAN line-by-line data and the cross-section data is encouraged to consult and cite the original
sources of the data. In the case of the line-by-line parameters, there are indices pointing to the sources of six parameters:
the transition wavenumber, n; the intensity, S; the air- and self-broadened half-width parameters, gair and gself; the
exponent for the temperature dependence of the air-broadened half-width parameter, n; and the air-pressure shift
parameter, d. The sources are contained in a separate file in the compilation.

The following subsections cover all molecules whose parameters have been updated since the last edition of HITRAN [1].
The descriptions are generally ordered by increasing wavenumber region, and we have attempted to describe the
improvements in the line positions and intensities prior to those in the other parameters, when feasible. Future
improvements are also mentioned where necessary.

2.1. H2O (molecule 1)

Water vapor spectroscopy is of paramount importance to many applications. Not only are the spectroscopic parameters
needed for studies of the climate and energy budget of the Earth, but also for the atmospheres of stars (see for example
Ref. [11]) and now even exoplanets [12]. The recommended line list for water remains in a state of continued evolution.
Substantial changes to the half-width parameters for the main isotopologue H2

16O and the addition of new data for
isotopically substituted species are among the prominent recent modifications.

The 2004 edition of HITRAN [1] featured a major update in line positions and line intensities for all HITRAN water-vapor
isotopologues between 500 and 8000 cm!1 based on the work of Toth [13], with the exception of the principal isotopologue
which had calculated values from Coudert [14] up to 800 cm!1. However, recently reported measurements of transitions in
the n2 band in the 1000–2000 cm!1 range [15] suggest that Toth’s data systematically underestimated the intensities of the
strongest transitions in this region by between 5% and 10%. This conclusion is supported by independent ab initio
calculations [16]. The intensities of the unblended strong lines have therefore been replaced using the new measurements;
for four blended strong lines, those located at 1512.30732, 1539.05857, 1539.06079, and 1684.83515 cm!1, the theoretical
results are from variational calculations using an ab initio dipole surface [17]. There have been other recent measurements
at shorter infrared wavelengths [15,18,19] as well as a comprehensive ab initio analysis of the line intensities [20]. The issue
of whether or not adjustments are also needed for the line intensities at these wavelengths is currently being studied with
a view to coming up with recommendations for a future edition of the database.

The region 9500–14500 cm!1 for the main isotopologue has been updated using the new analysis by Tolchenov and
Tennyson [21] who employed a novel fitting technique to reanalyze a series of Fourier transform absorption spectra of pure
water vapor recorded by Schermaul et al. [22,23]. However, any data attributed to Brown et al. [24] that were in
HITRAN2004 have been retained. Analogously, the 14500- to 26000-cm!1 region has been updated using the work of
Tolchenov et al. [25] replacing the data from Coheur et al. [26] in HITRAN2004. Comparisons with previous studies onwater-
vapor absorption in this region suggest that the new parameters give a more consistent representation of the spectrum.

An update has also been made for the parameters of H2
17O and H2

18O isotopologues in the near-IR and visible region
based on the work of Tanaka et al. [27]. This work is a reanalysis of long-path length Fourier transform spectra originally
recorded at Kitt Peak by Chevillard et al. [28] and analyzed initially by Tanaka et al. [29]. The lines listed previously in this
region for both isotopologues have been removed and replaced by 1087 lines of H2

18O spanning the range
12400–14520 cm!1 and 891 lines of H2

17O in the range 11365–14 475 cm!1. In addition, some misidentified lines that
have now been attributed to oxygen, have been removed from the water-vapor line list.

A major addition has been made with 3528 monodeuterated water-vapor (HDO) transitions in the near infrared and visible,
specifically 11600–23000cm!1. Previous editions of the database did not contain any HDO transitions in this region. The data
are due to a re-analysis by Voronin et al. [30] of the long-path Fourier transform spectrum recorded by Bach et al. [31].

The pressure-broadened half-width parameters for the three most abundant isotopologues of water, H2
16O, H2

18O, and
H2

17O, have been completely updated. Air-broadened half-widths were updated in 2006 (an interim update) using an
algorithm based on physical principles and statistics developed by Gordon et al. [32], which set a new criterion for the best
available air-broadened half-width parameters using a mixture of measurements, calculated, and semi-empirical data.
These new parameters have been tested for different remote-sensing applications and were found to give improved profiles
for atmospheric constituents. The algorithm has been improved for the current release of HITRAN: additional
measurements of gair and d [18,33–39] and gself [18,38–45] have been added to the measurement databases. Additional
data [46,47] have been added to the theoretical database of gair, n, and d. The database of calculations of gself for water vapor
now contains the data of Antony et al. [48,49] and Cazzoli et al. [44].

The temperature dependence of the air-broadened half-widths has now been added to all water-vapor transitions via an
algorithm that first seeks values from CRB (Complex Robert–Bonamy) calculations [46,47,50]. If a CRB value for a transition
is not found, the n values as a function of rotational quantum numbers from Table 7 of Ref. [1] are used.

2.2. CO2 (molecule 2)

High-resolution spectroscopic monitoring of the evolution of carbon dioxide in the terrestrial atmosphere is obviously
one of great importance for policy makers. Carbon dioxide is also prevalent in the atmospheres of some rocky planets, such
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as Venus and Mars. With its many bands of very different intensity throughout the spectrum, carbon dioxide is also an
excellent tool for probing atmospheres to different depths.

Since the last edition of the HITRAN database [1], there have been a large number of experimental and theoretical
investigations of carbon dioxide spectra. A notable effort is the set of extensive Fourier transform spectroscopy (FTS)
experiments carried out by the Jet Propulsion Laboratory (JPL) [51–58] in order to support the OCO mission [8]. The results
of these efforts for the 4300–7000 cm!1 region have been compiled into a HITRAN-like database [57] with parameters for
nine different isotopologues (including 13C18O2 which was not previously tabulated in HITRAN). The parameters listed in
Ref. [57] cover a wide dynamic range (4"10!30–1.29"10!21 cm!1/(molecule cm!2) at 296K) which is substantially larger
than the FTS experimental detection limit, i.e. parameters for some high-J lines as well as for lines of weak unobserved
bands were theoretically extrapolated. Parallel experiments featuring the cavity ring down spectroscopy (CRDS) technique
[59–64] in the 5851–7045 cm!1 region have shown that theoretical extrapolations of the FTS data in Ref. [57] deviate
seriously from the CRDS line positions and line intensities for some of the higher-J lines, while some of the weaker bands,
observed to be above 4"10!30 cm!1/(molecule cm!2) are missing completely from the predicted line list (see discussion in
Refs. [62,65,66]). These discrepancies are thought to have a reliable basis because the CRDS technique allows the detection
of lines with much weaker intensities than those with the FTS, although CRDS spectra are inferior to FTS spectra in terms of
overall accuracy of determining line positions.

Simultaneously, great progress has been made in the global effective Hamiltonian (EH) model developed at the
Université Pierre et Marie Curie (Paris, France) and the Institute of Atmospheric Optics (Tomsk, Russia) [67–70], which was
used in the calculation of the theoretical Carbon Dioxide Spectroscopic Databank (CDSD) [71], significantly improving and
extending the previous version [72] and achieving a pronounced agreement with the CRDS experiments. The improvement
and extension of the CDSD databank have been achieved due to incorporating new measurements performed during the
last five years into the global modeling. The above mentioned CRDS measurements in Grenoble and FTS measurements at
JPL have had an especially strong impact on the quality of the modeling.

The present atmospheric version of CDSD consists of 419610 lines belonging to 12C16O2,
13C16O2,

16O12C18O, 16O12C17O,
16O13C18O, 16O13C17O, and 12C18O2 covering a wavenumber range of 5–12784 cm!1. The intensity cutoff of CDSD was set to
10!30 cm!1/(molecule cm!2). On average, the residuals between CDSD calculated line positions and those observed are two
times larger than measurement uncertainties. CDSD calculated line intensities are almost always within their
measurement uncertainties.

The current atmospheric version of the databank is available via an anonymous ftp site ftp.iao.ru in the folder /pub/
CDSD-2008/296. The same site also contains two other dedicated versions of the databank: a version for high-temperature
applications (/pub/CDSD-2008/1000) and a version for studying the atmospheres of Venus and Mars (/pub/CDSD-2008/
Venus).

The need for a sensible mixing of the experimental and theoretical data is obviously required in the 4300 to 7000 cm!1

region in order to support atmospheric remote sensing of the earth-like planets (Earth, Mars and Venus). In order to do that
one has to consider the following caveats:

1. The database [57] (hereafter referred to as the OCO data set) is based on FTS measurements that are very accurate and,
besides line positions and intensities, allow measurements of collision broadening parameters. However, theoretical
extrapolations applied in the OCO data set for transitions weaker than 10!26 cm!1/(molecule cm!2) for the principal
isotopologue and 10!27 cm!1/(molecule cm!2) for the other isotopologues have led to some very large deviations from
subsequent observations in predicting line positions and especially intensities.

2. The data collected in the cavity ring down laser experiments (hereafter referred as CRDS data) is nearly complete
for the lines stronger than 5"10!29 cm!1/(molecule cm!2). However, the typical accuracy of these line positions
(1"10!3 cm!1) is inferior to that of FTS experiments (4"10!5 cm!1). Finally, CRDS measurements do not provide data
below 5851 cm!1 and do not provide pressure-induced parameters. Note that the data set for 13C16O2,

16O13C18O,
16O13C17O, 13C18O2 and 18O13C17O compiled in Ref. [65] provide experimental line positions supplemented with
intensities calculated using the EH model and effective dipole moment parameters for completeness (13C18O2 and
18O13C17O isotopologues have not been tabulated in HITRAN before). For 12C16O2,

16O12C17O and 16O12C18O [62] only line
positions are provided, although parameters for 12C16O2 are also tabulated in Ref. [61] where the experimental line
positions and intensities are supplemented with the CDSD intensities.

3. The theoretical CDSD databank is quite complete, with intensities down to 1"10!30 cm!1/(molecule cm!2), at least for
the majority of the HITRAN isotopologues. It has excellent predictive capabilities for line positions and intensities,
although it is, of course, not as good as the accuracy achieved by experiment. In addition, a minor limitation of the EH
method occurs when there are interpolyad anharmonic couplings. Four such occurrences have been observed for
the asymmetric isotopologues, namely 16O12C18O [62], 16O13C17O [65] and 16O13C18O [64,65]. Although these resonance
interactions are not common for carbon dioxide, small deviations in the values of predicted line positions and line
intensities values from their real values cannot be ruled out completely.

With this information in mind, a procedure, shown in a schematic diagram in Fig. 1, was developed in order to keep only
the best parameters from the OCO, CRDS and CDSD data sets for compiling the HITRAN2008 CO2 line list in the 4300 to
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7000 cm!1 region, which completely replaces HITRAN2004 data in this wavenumber range. In this procedure, the CO2

transitions that are critical for the OCO mission are always assumed to have superior quality within the FTS detection limit
(lines stronger than 10!26 cm!1/(molecule cm!2) for the principal isotopologue and 10!27 cm!1/(molecule cm!2) for the
other isotopologues. For the weaker lines in the 5851–7045 cm!1 region, the CRDS line positions are taken, wherever
available, and supplemented with CDSD intensities. For the weak lines not present in the CRDS data set (this especially
concerns lines below 5851 cm!1 and blended lines unobserved by CRDS due to overlapping with stronger lines), the CDSD
line parameters were taken. The line positions and intensities for two rare isotopologues, 17O12C18O and 18O13C18O, which
are absent in CDSD, have been taken from the CO2 list generated for OCO.

Finally, the gair, gself, n, and d parameters, available in the OCO data set, have been included in this combined line list.
Note that these parameters are slightly different from those listed in the supplementary file of Ref. [57], due to
improvements accomplished through the newer work of Predoi-Cross et al. [73].

All combined (mixed) data sets are relatively new. The procedure suggested above is a temporary but necessary solution
that has to be tested against atmospheric retrievals. As new, highly accurate measurement data sets become available, this
procedure will have to be refined for future updates of the HITRAN database.

For the spectral regions below 4300 cm!1 and above 7000 cm!1 the following improvements have been made to the
HITRAN database: (1) The four bands above 9650 cm!1 that were added to HITRAN2004 were found to have an error
associated with an incorrect account of nuclear spin statistics. These bands have now been replaced with the lines from the
CDSD databank above 9650 cm!1, which includes several other additional bands. These data are important for the studies
of the Venus atmosphere [74]. (2) In HITRAN2004 some of the bands of the principal isotopologue in the 2.8-mm region
were based on extrapolations of limited experimental data. For example, the 23301–02201 band (centered at 3555 cm!1)
contained 188 lines which were extrapolated from 16 measured lines and the interaction between the vibrational levels
23301 and 12212 was not well accounted for at higher-J values. An analogous problem occurs in the 40002–11102 and the
30001–01101 bands (centered at 3543 and 3557 cm!1, respectively). Thus, the line positions and intensities for these bands
were replaced with the ones from the CDSD databank. (3) Recent FTS measurements [75] of the line intensities for the
11112–01101 band of the 13C16O2 isotopologue (centered at 3499 cm!1) have shown differences up to 100% compared to
HITRAN2004 (the error code in the former HITRAN indeed indicated problems for this band). The intensities of this band
were previously calculated by the DND method of Wattson and Rothman [76], which did not fully account for
perturbations. Therefore, the parameters for this band have been replaced with the ones from CDSD. (4) As was noted by
Wang et al. [77], the HITRAN2004 line positions of the 30003–00001 band (at 3857 cm!1) for 16O12C18O differ from new
experimental ones by !0.1 to 0.1 cm!1. These line positions have now been replaced with line positions calculated using
the EH method. (5) Although at this point the high-quality experimental data from Toth et al. [58] have not yet been
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included into HITRAN, we note the remark in that work that experimental line intensities of the 10012–00001 band for
16O13C18O (at 3490 cm!1) differ from those in HITRAN2004 by amounts from !8% to 31%. Now the intensities of these lines
have been replaced with those from CDSD, which agree very well with Ref. [58]. (6) In the 11112–11102 band of the
principal isotopologue (at 2315 cm!1), all HITRAN2004 line positions with uncertainty code 0 were replaced with the line
positions and intensities from CDSD. (7) The intensity cutoff that was applied to earlier editions of the HITRAN database for
CO2 has been lowered and is now 4"10!30 cm!1/(molecule cm!2). Therefore, weak bands from the CDSD databank that did
not appear previously in HITRAN [1] have been included in the new edition.

Finally, the parameters for broadening coefficients available from the OCO data set have been applied to all the bands,
even outside the OCO spectral region. Although the line-shape parameters have been improved throughout the database,
the improvements are only within the formalism of the Voigt line-shape profile, which is known to be inadequate to model
the line shape given the precision of modern instruments used in atmospheric retrievals. In addition, the line mixing
parameters have not been updated or extended in HITRAN, and this is one of the major issues that will be addressed in
future updates.

2.3. O3 (molecule 3)

Monitoring ozone in the atmosphere has been a major issue for two different respects: its deleterious effects in the
troposphere as a pollutant and its protective effect in the upper-atmosphere layer. Furthermore, detection of ozone in the
atmospheres of exosolar planets might be an indicator of oxygen, which is more difficult to observe spectroscopically.

A major update has been made for the first three isotopologues of ozone, 16O16O16O, 16O16O18O, and 16O18O16O. The line
positions, intensities, and lower-state energies correspond to the S&MPO (Spectroscopy and Molecular Properties of Ozone)
databank [78]. These results are based on the analyses of the absorption spectra recorded by the GSMA (Groupe de
Spectrométrie Moléculaire et Atmosphérique) using the FTS of Reims University [79]. All these data have been published
previously and are briefly described below. The list of the bands of 16O16O16O included in HITRAN for the first time is shown
in Table 1. The updated bands are listed in Table 2.

Calculation of the line positions of all bands was made by using Hamiltonian parameters for the lower energy levels
from Ref. [96] for the (0 0 0), (10 0) and (0 01) vibrational states, from Ref. [87] for the (010) state, and from Ref. [88] for
the (0 20) state.

The references for the newly included bands are given in Table 1 for the line positions (column 5) and for the line
intensities (column 6). An additional detailed description of the improvements in the 2550–2900 cm!1 spectral region is
given in a recent paper [100].

The upper-state energies of 24 bands listed in Table 2 (except 2n2+2n3!2n2 and n1+2n2+n3!2n2) were calculated using
Hamiltonian parameters [89]. The transition moment parameters for the cold bands listed in this table (2590–3400 cm!1

spectral range) are given in Ref. [89]. Calculation of the hot-band line intensities was made with the transition moments of
Refs. [92,95]. The main term of the dipole transition moment of the 3n3!n1 band was estimated to be m1

(0 0 3)’(10 0) ¼
!1"10!3 Debye [97]. The upper-state energies and line intensities of the 2n2+2n3!2n2 and n1+2n2+n3!2n2 bands were
calculated using Hamiltonian parameters from Ref. [90] and transition moments from Ref. [95].

The least known part of the mid-infrared ozone (16O3) absorption spectrum is now in the range of 2.45–2.78mm
(3600–4080 cm!1). First of all, the n2+3n3 and, especially, n1+n2+2n3 bands must be updated in a future edition by the data
reported by Bouazza et al. [94] for the 3600–3830 cm!1 region. Secondly, the n1+4n3!n3 hot band must be taken into
account for the 3865–3895 cm!1 region. The line positions of this band have been used by Flaud et al. [112] for
determination of the rotational energies of the (10 4) vibrational state, but the line intensities have not been analyzed.
According to an estimate of Barbe and Mikhailenko, the total band intensity Sn(n1+4n3!n3) can be of the order of 20% of
Sn(2n1+n2+n3) (see Table 1). Thirdly, the region of the n1+3n3, 4n3, and 3n1+n2 bands (3900–4080 cm!1) analyzed by Perrin
et al. [108] must be revisited. In particular, the RR branch of the 4n3 band (4033–4065cm!1) is not reproduced by current data.

The lower-state energies of both 18O enriched species have been calculated using the Hamiltonian parameters of
Ref. [117]. The upper-state energies were calculated with Hamiltonian parameters of Refs. [118,119] for 16O16O18O and
16O18O16O, respectively. Transition moment parameters reported by Barbe and De Backer-Barilly [120] were used for
calculations of the line intensities of both species. Tables 3 and 4 list the updates for 16O16O18O and 16O18O16O, respectively.

The new data cover bands in the spectral range 593–5786 cm!1, thereby extending the short wavelength coverage of
HITRAN as well (from 2.5 to 1.7mm). The total number of transitions has increased significantly, from 311481 to 409686. In
addition, an improved algorithm for incorporating the ozone line-shape parameters has been used for all ozone bands
throughout the compilation.

The majority of HITRAN2004 air-broadened half-width parameters of ozone lines and their temperature dependences
were calculated using polynomials derived by Wagner et al. [121] separately for the n1/n2 and n3 bands. The polynomials
derived for the n3 band were applied for all the bands in the database except the n1 and n2 bands. This has been revised now
and the n1/n2 polynomials fromWagner et al. [121] were used for all B-type bands and the ones from the n3 band were used
for all A-type bands. For instance, the pure rotational band is a B-type band and the coefficients derived from the n1/n2
polynomials agree better with the values measured in the pure rotational band (for example with measurements in
Ref. [122]) than those from n3 polynomials. In addition, a new polynomial was derived for gair in the B-type bands for the
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Table 1
New ozone bands for the principal isotopologue 16O16O16O.

Band Spectral range (cm!1) Number of lines Sum of line
intensities
(10!22 cm!1/
(molecule cm!2))

References for line
positions

References for line
intensities

030–020 593–813 2897 19.640 [80,81] [82]
121–021 956–991 15 0.004 [83–85] [86]
030–010 1329–1480 804 0.403 [87,80] [88]
102–011 1330–1378 210 0.057 [89,90] [91]
111–020 1346–1409 221 0.090 [81,89] [91]
201–110 1367–1406 71 0.016 [89,90] [91]
022–011 1619–1687 660 0.396 [83,90] [92]
121–110 1622–1678 297 0.096 [83,90] [92]
031–020 1632–1711 1109 1.734 [81,93] [92]
130–020 1722–1875 443 0.220 [81,89] [92]
121–011 1735–1754 42 0.013 [83,90] [92]
112–110 1886–2034 104 0.039 [90,94] [95]
130–001 1992–2061 3 0.005 [96,89] [97]
130–100 2040–2102 10 0.025 [96,89] [97]
211–011 2043–2149 62 0.017 [90,98] [95]
003–010 2255–2360 1809 11.908 [87,89] [84]
102–010 2270–2407 479 0.400 [87,89] [99]
201–010 2281–2325 11 0.003 [87,89] [99]
031–010 2333–2407 742 0.474 [87,93] [90]
130–010 2424–2552 487 0.185 [87,89] [84]
013–100 2529–2607 659 0.394 [96,94] [100]
013–001 2602–2724 775 0.455 [96,94] [100]
022–010 2603–2769 1629 1.729 [87,83] [89]
112–001 2630–2720 1432 4.414 [96,94] [100]
112–100 2658–2718 68 0.025 [96,94] [89]
131–020 2666–2741 899 0.828 [81,101] [89]
221–110 2673–2727 311 0.102 [90,102] [89]
121–010 2678–2774 1851 16.465 [87,83] [89]
211–100 2681–2764 1242 2.522 [96,98] [89]
211–001 2713–2768 48 0.014 [96,98] [89]
202–100 3009–3093 365 0.155 [96,103] [89]
031–000 3032–3111 689 0.417 [96,93] [93]
202–001 3035–3117 662 0.392 [96,103] [89]
211–010 3078–3166 876 0.878 [87,98] [89]
130–000 3133–3249 384 0.126 [96,89] [89]
022–000 3256–3511 1826 1.225 [96,83] [83]
121–000 3286–3480 1764 7.430 [96,83] [83]
131–010 3369–3440 910 0.689 [87,101] [83]
113–100 3506–3566 466 0.195 [96,104] [94]
014–001 3525–3605 992 1.306 [96,104] [94]
014–100 3534–3538 9 0.002 [96,104] [105]
113–001 3547–3605 11 0.004 [96,104] [94]
212–001 3704–3755 326 0.102 [96,106] [107]
221–010 3751–3821 895 0.772 [96,102] [107]
211–000 3768–3866 1762 12.815 [96,98] [107]
113–010 3864–3968 1466 4.367 [87,104] [108]
014–010 3875–3968 183 0.076 [87,104] [109]
320–010 3888–4000 279 0.173 [87,104] [109]
202–000 4034–4207 1387 1.100 [96,103] [103]
131–000 4065–4145 714 0.460 [96,101] [101]
301–000 4179–4264 1213 2.471 [96,110] [110]
230–000 4195–4263 14 0.009 [96,110] [110]
221–000 4444–4525 1066 1.034 [96,102] [102]
014–000 4522–4700 1998 1.626 [96,104] [104]
123–010 4531–4600 783 0.649 [87,111] [111]
330–010 4554–4602 47 0.018 [87,111] [111]
113–000 4562–4668 1599 8.751 [96,104] [104]
320–000 4586–4700 587 0.432 [96,104] [104]
212–000 4700–4845 924 0.412 [96,106] [106]
141–000 4760–4794 4 0.001 [96,106] [106]
104–000 4805–4979 977 0.730 [96,112] [112]
005–000 4807–4957 1579 5.350 [96,112] [112]
311–000 4808–4952 1203 3.561 [96,112] [112]
203–000 4997–5085 1086 1.255 [96,113] [113]
132–000 5028–5085 27 0.014 [96,113] [113]
123–000 5216–5301 784 0.586 [96,111] [111]
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cases where J ¼ Ka by fitting the data from Refs. [123,124]. This polynomial was applied to B-type transitions with J00p12. In
HITRAN2004 a polynomial derived by Flaud et al. [125] was used to calculate gair for the transitions outside the range of
applicability of the Wagner et al. polynomials [121]. These coefficients have been scaled by a factor of 1.05, as it was found
that they are underestimated at higher J.
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Table 1 (continued )

Band Spectral range (cm!1) Number of lines Sum of line
intensities
(10!22 cm!1/
(molecule cm!2))

References for line
positions

References for line
intensities

401–000 5244–5319 896 0.809 [96,111] [111]
330–000 5252–5302 43 0.015 [96,111] [111]
024–000 5271–5316 2 0.001 [96,111] [111]
015–000 5444–5526 947 0.975 [96,114] [114]
213–000 5625–5705 622 0.344 [96,115] [115]
420–000 5663–5706 10 0.003 [96,115] [115]
312–000 5753–5786 14 0.004 [96,116] [116]
Total 51781 124.407

Table 2
Updated ozone bands for the principal isotopologue 16O16O16O.

Band Spectral range (cm!1) Number of lines Sum of line intensities
(10!21 cm!1/(molecule cm!2))

111–100 1613–1849 1271 0.267
012–001 1617–1826 1581 0.640
111–001 1629–1854 1557 0.130
012–100 1637–1706 85 0.004
210–100 1701–2051 1663 0.197
210–001 1719–2066 388 0.015
003–100 1848–2104 1920 1.175
003–001 1867–2098 2847 1.313
102–100 1869–2071 2206 0.426
012–010 1872–2120 3794 3.198
201–100 1888–2243 2831 10.902
201–001 1896–2289 2165 0.328
102–001 1901–2085 2965 15.675
022–020 1921–2067 1046 0.740
121–020 1984–2079 1817 1.424
111–010 1918–2220 3520 42.815
300–100 2021–2288 2508 0.472
210–010 2006–2353 3050 0.838
300–001 2012–2313 1804 0.915
012–000 2590–3025 3886 3.293
111–000 2626–3020 3604 24.909
210–000 2704–3156 3327 0.806
003–000 2906–3202 4512 140.140
201–000 2919–3274 2706 7.854
102–000 2924–3196 4646 12.683
300–000 2955–3398 2445 0.467

Table 3
New ozone bands for the 16O16O18O isotopologue.

Band Spectral range (cm!1) Number of lines Sum of line intensities
(10!22 cm!1/(molecule cm!2))

002–000 1903–2143 6004 3.217
111–010 2010–2085 2413 1.334
101–000 2004–2182 8284 44.610
200–000 2020–2266 6117 1.660
111–000 2694–2768 2337 1.023
Total 25155 51.845

Note: The 101–000 band is an update.
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There is still a long way to go in order to improve the broadening parameters of ozone. This especially concerns the
temperature exponents where the experimental measurements rarely agree with each other or with the theoretical
calculations.

2.4. N2O (molecule 4)

Concerning nitrous oxide, it was discovered that two strong P(1) lines (at 578.5261 and 1167.2943 cm!1) were absent
from the HITRAN2004 edition. These lines have been restored. In addition, 6 lines of a weak, highly perturbed band
(0610–1010) around 4.6mm have been added. Energy levels as well as the lower state levels of the perturbed state, 0610,
were computed from the coefficients given in Ref. [126] and the interaction parameters for intensities are presented in
Ref. [127]. Only the strongly perturbed transitions were considered around and including J ¼ 47.

2.5. CO (molecule 5)

The line parameters of carbon monoxide have not undergone a revision and remain the same as in HITRAN2004.

2.6. CH4 (molecule 6)

The need for reliable high-resolution methane parameters throughout the spectrum is driven by many applications.
Besides being a major greenhouse gas and absorber in the terrestrial atmosphere, it is a major component of the giant gas
planets, (Jupiter, Saturn, Uranus, Neptune) and of the atmosphere of Saturn’s main satellite, Titan [128]. It is also prominent
in the atmospheres of brown dwarf stars, and has recently been identified by Swain et al. [129] in the atmosphere of an
exosolar planet.

The parameters of 12CH4 have been updated, and a few new bands of CH3D were added, but no changes were made to
the 13CH4 parameters. The minimum intensity limit was set to 10!29 cm!1/(molecule cm!2) at 296K to account for
increasing sensitivity in remote-sensing instrumentation. Significant changes were made for gair between 5800 and
6180 cm!1.

The 12CH4 line positions and intensities were revised from 0 to 3300 cm!1 using calculated values from the new global
analysis by Albert et al. [130] for the three lowest polyads (ground state, dyad from 900 to 1900 cm!1 and pentad from 1900
to 3400 cm!1). Fig. 2 shows the polyad scheme for 12CH4 and also demonstrates the increasing complexity as one
progresses to higher wavenumber. In the far-IR, the intensities of ground-state transitions were adjusted by 16% to match
the results of Wishnow et al. [131], but no change was required for the dyad–dyad hotbands. Some predicted pentad
positions were replaced by semi-empirical upper-state energy levels obtained by adding calculated lower-state energies to
observed positions. Because further intensity analyses are needed to meet required atmospheric remote-sensing
accuracies, the semi-empirical HITRAN [1] parameters were retained for the hot bands in the dyad and pentad regions
(900–3500 cm!1); in the latter interval, a minimum intensity limit of hot bands was 10!27 cm!1/(molecule cm!2) at 296K.
For similar reasons, no change was made for the octad (3200–4900 cm!1).

A number of improvements were made to the empirical linelist near 6000 cm!1. First, the intensities and half-widths
retrieved by Frankenberg et al. [132] replaced existing values for the 5860–6180 cm!1 region. During the format conversion
for HITRAN2004 [1], the empirical lower-state energies of Margolis [133,134] given previously were corrupted. These values
have been restored, and additional values from Gao et al. [135] were added. Misaligned fields in the near-IR quantum
numbers were corrected, but only a few new assignments were entered to existing entries. However, weak lines with
intensities less than 10!24 cm!1/(molecule cm!2) at 296K are still missing between 5500 and 6180 cm!1.

For broadening parameters, if there were no direct measurements of half-widths and pressure shifts [136,137], then
estimated default values for gair, gself, n, and d (similar to those used in HITRAN 2000 [138] and 2004 [139]) were used for
most of the transitions up to 5860 cm!1; the exceptions were approximately 4000 measured or theoretically predicted
broadening coefficients inserted on a line-by-line basis. For the dyad, new measurements of gair, gself, n, and d of about 500
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Table 4
New ozone bands for the 16O18O16O isotopologue.

Band Spectral range (cm!1) Number of lines Sum of line intensities
(10!22 cm!1/(molecule cm!2))

002–000 1854–2082 3175 1.503
111–010 1962–2049 1375 0.749
101–000 1898–2149 3074 22.771
200–000 2020–2225 2450 0.378
111–000 2654–2739 1300 0.452
Total 11374 25.853

Note: The 101–000 band is an update.
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transitions were taken from Smith et al. [140,141]. For the pentad, about 500 prior measurements [138] were used along
with approximately 3800 predicted values for gair, n, and d of the n3 transitions from Antony et al. [142]. Scaled
N2-broadening from Frankenberg et al. [132] were inserted from 5860 to 6184 cm!1 and a few hundred values for gair, were
entered between 5560 to 5860 cm!1 [143]. The value for the parameter n was set either to a default constant (0.75 below
5860 cm!1 or 0.85 above 5860 cm!1) unless direct measurements were available [143].

There are a number of ongoing and recent studies [143,144] which can further improve the near-IR parameters
(4800–7700 cm!1). It is expected that an interim update of this region and a new semi-empirical list of the octad will be
available within one year. Finally, the list described here is tailored for Earth remote sensing and will be inadequate to
interpret high-temperature spectra (e.g. [145]). More extensive calculation of weaker transitions and partition functions
[146] can be found at http://icb.u-bourgogne.fr/OMR/SMA/SHTDS. As usual, the predicted values beyond the range of
measurements are expected to become very inaccurate because of extensive rovibrational interactions.

Most of the parameters for the monodeuterated form of methane, CH3D, were retained from HITRAN2004. For the 2008
modifications, the positions and intensities of the far-IR (rotational) transitions were replaced with improved predictions,
and a total of nine new bands were added at three different wavelengths (8, 2.9 and 1.56mm). The far-IR prediction, based
on the frequency analysis of Lattanzi et al. [147], was obtained from the JPL and Cologne Molecular Spectroscopy databases
[148,149]. Because 13CH3D was detected in Titan’s atmosphere [150], this species was added to the database for the first
time. The prediction of the 13CH3D triad (n6, n3 and n5) near 8mm used a programwritten for C3v molecules by Tarrago and
Delaveau [151]. This prediction was based on the position analysis by Ulenikov et al. [152] and employed the transition-
moment parameters of the 12CH3D isotopologue from Brown et al. [153]. Six new 12CH3D vibrational bands were also added
in the near-IR, using the analyzed positions and line intensities of n2+n3, n2+n5, n2+n6, n3+2n6 and 3n6 at 2.9mm by Nikitin
et al. [154] and empirical measurements of 3n2 at 1.56mm reported by Boussin et al. [155]. The values for gair and gself were
generally obtained using empirical formulae obtained from 12CH3D triad measurements [1,156]. However, gair, gself, and d
values observed by Boussin et al. [155] were used for 3n2. The temperature dependence of the half-widths, n, was crudely
estimated in all bands using CH4 values averaged by J [1]. The new mid- and near-IR parameters are considered to be
preliminary and so rather conservative accuracies were set; this certainly indicates that additional laboratory and
theoretical studies are needed.

2.7. O2 (molecule 7)

The line positions, intensities, and pressure-broadening parameters (gair, gair, and d) of the oxygen A-band
(b1Sþ

g  X3S!
g ) near 13100 cm!1 were modified for all three isotopologues (16O2,

16O18O, and 16O17O). The 16O2 line
positions and pressure shifts in HITRAN2004 in this region were replaced with values from Robichaud et al. [157] and
intensities and the self- and air-broadened half-widths from Robichaud et al. [158]; these measurements obtained for the P
branch using cavity ringdown spectroscopy [159] were extrapolated to the R branch. The value of the temperature
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Fig. 2. Polyad energy-level structure for 12CH4.
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dependence of half-widths from Brown and Plymate [160] was retained, however. The positions and intensities of the two
minor oxygen species were taken from Robichaud et al. [161]. For all three species, the half-widths were computed with the
empirical formula derived from Yang et al. [162],

g ¼ Aþ B1þ c1J
0 þ c2J

02 þ c3J
04 (1)

using the 16O2 constants from Table 6 of Robichaud et al. [158]. The measured values of d of the b1Sþ
g  X3S!

g band were
taken from Robichaud et al. [157] for the P Branch, but averages of shifts from Predoi-Cross et al. [163] were used for the R
branch.

These modifications improve the accuracies of the parameters in several different aspects. The positions are now
referenced to atomic potassium calibration standards [164], resulting in accuracies of 0.00006 cm!1 or better for 16O2 and
16O18O, and 0.0005 cm!1 for 16O17O. The differences between HITRAN2004 and new positions are relatively small for the
main and least abundant species (0.0007cm!1 for 16O2 and 0.002 cm!1 for 16O17O), but much larger for 16O18O (up to
0.20 cm!1); counter to the description given for HITRAN2004, the 16O18O positions were not updated in that edition, and
the 16O18O upper-state levels were still based on results from 1948 [165]. Line intensities are only slightly different: !0.8%
for 16O2, +1% for 16O18O, and 75% for 16O17O (depending on the rotational quanta) [161]. The accuracies for intensities are
thought to be 71% or better for the first two species, but more analysis is needed for 16O17O. For the half-widths, the values
at high quantum numbers (J422), previously in error by more than 40% near J ¼ 30, are now thought to be accurate to
72%. Pressure shifts, however, are still rather uncertain (70.003 cm!1) because values from different studies do not agree
(e.g. see Fig. 4 in Robichaud et al. [157] and the discussions in Predoi-Cross et al. [163,166]).

It should be emphasized that even with these improvements, the line parameters are not sufficient to reproduce
atmospheric observations at 13,100cm!1 because Voigt line shapes are inadequate. Tran and Hartmann [167] and Predoi-Cross
et al. [163,166] have demonstrated the need to apply line mixing (and perhaps speed dependence) to the A-band. It is thus
recommended that these improved line parameters be combined and tested with line-mixing results from Refs. [163,166,167].

The a1Dg  X3S!
g band at 1.27mm has not been updated in some time. This band is very important partly because it is

being used as a benchmark in some remote-sensing applications. A new line list is described in Washenfelder et al. [168]
which is based on laboratory measurements published by Newman et al. [169,170]. These data will be considered for an
impending update.

Finally, it was discovered that due to a programming error, some of the Einstein A-coefficients and statistical weights for
oxygen in HITRAN2004 were in error; they have been recalculated.

2.8. NO (molecule 8)

The Einstein A-coefficients and statistical weights were recalculated for the three isotopologues in HITRAN, due to a
programming error in HITRAN2004. In the process, it was noted that hyperfine splitting for the microwave and far infrared
lines was not included in the HITRAN2004 edition. To include hyperfine spitting for the principal isotopologue, 14N16O, we
have adapted data generated in the course of work summarized in Goldman et al. [171]. These data also include magnetic-
dipole transitions between spin components of the ground electronic state, previously absent in HITRAN. The magnetic-
dipole transitions obey different parity selection rules and have been identified by the letter ‘‘m’’ in the first field for
upper-state rotational quantum numbers in the HITRAN database.

In addition, we included lines with resolved hyperfine structure from the JPL catalog [148] if these lines were not
available from Ref. [171].

2.9. SO2 (molecule 9)

Because of its presence in interstellar clouds and in the atmosphere of Venus, sulfur dioxide is well known to be both of
astrophysical and planetary importance. In the terrestrial atmosphere, SO2 is produced by both anthropogenic and natural
sources, and is responsible for the production of acid rain. Strong volcanic eruptions, such as the Mount Pinatubo eruption
in the Philippines in June 1991, can deposit a large amount of SO2 in the atmosphere. Once in the stratosphere, sulfur
dioxide is converted into sulfate aerosols which affect both stratospheric chemistry and climate. The HITRAN2004 database
[1] provided SO2 parameters in seven different spectral regions, which correspond to transitions within the ground
vibrational state, and the 19.3- , 8.6- , 7.3- , 4- , 3.7- and 2.5-mm spectral regions. However, as stated in Ref. [1], there were
considerable differences in the 19.3-, 8.6- and 7.3-mm spectral regions between HITRAN2004 and published papers
[172–175]. The 8.6- and 7.3-mm regions are important for atmospheric detection of SO2. The 7.3-mm region corresponds
indeed to the strongest SO2 infrared band but unfortunately it has the disadvantage of being overlapped with the strong n3
band of water vapor, preventing measurements of SO2 in this infrared region from the ground. On the other hand, the n1
band, although about nine times weaker than n3, corresponds to a rather clear atmospheric window. Finally the 19.3-mm
region can be used for retrieving SO2 in the atmosphere of planets.

For all these reasons it was decided to generate a new line list based on the recent published results. It includes not only
the cold bands n2, n1, and n3 but also the corresponding hot bands 2n2!n2, 3n2!2n2, n1+n2!n2 and n3+n2!n2 as well as the n3
band of 34SO2.
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As far as the air-broadened parameters are concerned, a survey of the literature [176–178] has shown that it was only
possible to estimate an average value for this parameter. In fact no variation of this parameter with respect to the lower
quantum numbers J or Ka of the transitions could be determined. As an example, Fig. 3 shows the measured parameters
with respect to the lower quantum numbers Ka of the transitions. It is clearly difficult to derive any clear variation
(the same is true when these parameters are plotted versus the quantum number J) so only an average value of
0.1025 cm!1 atm!1 could be determined.

The situation is completely different for the self-broadening parameters since many measurements spanning a wide
range of quantum numbers J and Ka are available [176,177,179–182]. While no variation with respect to the quantum
number J could be determined, a clear variation with respect to the quantum number Ka could be observed as shown in
Fig. 4. Following these results, it was decided to include in the database the following values for gself (in HITRAN2004 in
general a fixed value of 0.4 cm!1 atm!1 was used): gself ¼ 0.4 cm!1 atm!1 for Kap5, gself ¼ 0.156 cm!1 atm!1 for KaX21, and
gself calculated through a linear interpolation for 6pKap20.

The accuracy for line positions is estimated to be better than 0.001 cm!1. For line intensities, it is estimated to be on the
order of 2–3%, degrading up to about 15% for high J or Ka transitions. Finally, an accuracy of 10–15% for gair and gself seems a
reasonable estimate. Note that for consistency the new broadening parameters have been used for all the SO2 lines
included in the HITRAN database since in the previous version different values, the origin of which is not immediately
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transparent, were used. Also a ‘‘standard’’ value of 0.75 has been used for the temperature-dependence of the air-
broadened half-width parameter, n.

It is worth noticing that recently a series of papers [183–185] has been devoted to the high-resolution study of the
absorption of the 34SO2 isotopologue in the infrared. They will provide in the future much better spectral parameters which
should be included in a future HITRAN database.

2.10. NO2 (molecule 10)

Unchanged.

2.11. NH3 (molecule 11)

Unchanged.

2.12. HNO3 (molecule 12)

Using new and accurate experimental results concerning line positions and line intensities as well as sophisticated
theoretical methods, it has been possible to generate an improved set of line positions, line intensities, and line-shape
parameters for the nitric acid molecule in the infrared spectral region. The present update was performed in two steps
described in Refs. [186,187], respectively.

The first study [186] was performed in the 820–1770 cm!1 spectral range covered by the Michelson Interferometer for
Passive Atmospheric Sounding (MIPAS) instrument and the results of this first update are summarized in Table 5 of Ref.
[186]. The line positions have been improved for the n5 and 2n9 cold bands and the n5+n9!n9 hot band around 11.2mm, and
for the n8+n9 and n6+n7 bands around 8.3mm (see details in Refs. [186,188] and in the references therein). In addition, the
line intensities were updated in the 11.3-, 8.3- and 7.6-mm spectral ranges by making use of the cross-section
measurements performed in Ref. [189]. Finally the air-broadened half-width parameters were updated using an empirical
law describing the rotational dependence of these parameters.

The results of the second update are described in Table 1 of Ref. [187]. At 11.3mm, approximate parameters for the
n5+n7!n7 and n5+n6!n6 hot bands have been added for the first time to the line list. The intensities for the n6 and n8 bands
centered at 646.826 and 763.154 cm!1, respectively, were decreased by about 20–30% as compared to the previous HITRAN
version [1]. Also following recent line-broadening calculations [190], a complete update of the gair parameters was
performed in the 11-mm region. It is to be noticed that the gair parameters implemented in the narrow Q branches of the n8
and n5+n9!n9 bands at 763.154 and 885.425 cm!1, respectively, account empirically for line-mixing effects as evidenced by
laboratory measurements.

The validation of these updates in the new line list was performed during several satellite, ground-based or balloon-
borne measurement of atmospheric HNO3 [186,191,192]. Furthermore, the microwave line intensities, which were
overestimated by %30% [191], have been updated using the newer HNO3 listing in the JPL catalog [148].

Future studies should concentrate on the improvements of HNO3 line parameters in several spectral regions:

1. The far infrared region needs a revision. Indeed the present line list which is derived from a 2004 version of the JPL
catalog includes only transitions within the ground vibrational state. The updated line list should also include rotational
transitions within the first vibrational states of HNO3 [193,194].

2. In HITRAN2004 [1], the n5!n9 and 2n9!n9 hot bands were added to the existing n9 line list in the 22-mm region. In
Ref. [194], the hot bands intensities were scaled with respect to the n9 intensity from Sirota et al. [195]. The net result is
that there could be an inconsistency between the intensities of these two hot bands and the intensity of the n9 band
since this last band intensity was scaled using the work of Goldman et al. [196]. Indeed, the n9 intensities in Ref. [195]
are about 28% weaker than the intensity reported in Ref. [196]. Therefore, it is clear that new line intensity data are
needed for HNO3 in the 22-mm region.

3. The 7.6-mm region, which corresponds to the n3 and n4 bands located at 1325.7354 and 1303.5182 cm!1, respectively,
needs significant updates in term of line positions and intensities. The previous studies in this region [197] did not
consider resonances due to several dark states which perturb the 31 and 41 energy levels.

Future updates in the 11-mm region should include the linelist for the H15NO3 isotopologue of nitric acid [198], which is
the second-most abundant isotopic variant with a concentration of 3.7% in relative concentration. This isotopologue was
first detected in MIPAS/ENVISAT atmospheric spectra [199]; it has significance in the determination of the atmospheric
profile of the nitrogen isotopes.
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2.13. OH (molecule 13)

Following the work of Colin et al. [200], Bernath and Colin [201] have reanalyzed all the published experimental data for
the electronic ground state of the hydroxyl radical, to which they added a pure rotational constants of the n ¼ 4 level
determined from a solar spectrum [201]. They produced a new set of term values for n ¼ 0,y,10, extrapolated to five J
values above the last observed one.

These results were used to revise all the OH transitions (where hyperfine structure was not resolved) in the HITRAN
database with updated positions and ground-state energy values. However, the line list has been reduced to lower
Jmax values, thus eliminating high-J extrapolations used in the work [202] upon which HITRAN was previously based
(see Table 5). The new (unextrapolated) term values [201] agree with the observed data within the experimental error.
All the other line parameters were kept the same.

A small format change for the quantum numbers has been made that now shows both the upper and lowerL-doubling e
and f parity labels instead of only the lower label (we found that in some publications only the upper state is listed, not the
lower state as used in HITRAN). The lines with hyperfine splitting listed in HITRAN remain unchanged.

Due to a programming error in HITRAN2004, the Einstein A-coefficients and statistical weights have been recalculated
for all OH lines in the new database. Also, it was found that there were mistakes in parity assignments (e and f) in the pure-
rotation bands in HITRAN2004; these have now been corrected.

2.14. HF (molecule 14)

Unchanged.

2.15. HCl (molecule 15)

It was mentioned quite some time ago by Rinsland et al. [203] that the hydrochloric acid line positions in previous
editions of HITRAN were lacking accuracy, especially when compared to experiments at higher rotational lines. The line
positions of all HCl bands in HITRAN have now been recalculated using the most recent complete set of constants from
Coxon and Hajigeorgiu [204]. The new line positions are in excellent agreement with available experimental
measurements. An effort is planned to extend the number of bands of HCl in HITRAN and increase the coverage in J.

2.16. HBr (molecule 16)

Unchanged.

2.17. HI (molecule 17)

Unchanged.

2.18. ClO (molecule 18)

The Einstein A-coefficients in the HITRAN2004 data set for chlorine monoxide were found to be 1
4 of the correct values;

this is now corrected.
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Table 5
Jmax values for OH term values.

Vibrational level Jmax Ref. [201] Jmax HITRAN2004 Jmax HITRAN2008

0 49.5 45.5 45.5
1 47.5 45.5 45.5
2 46.5 44.5 44.5
3 44.5 44.5 44.5
4 36.5 44.5 36.5
5 22.5 44.5 22.5
6 23.5 44.5 23.5
7 23.5 42.5 23.5
8 17.5 40.5 17.5
9 18.5 38.5 18.5
10 16.5 35.5 16.5
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The microwave region has been updated with the latest data from the JPL catalog [148], which includes rotational
transitions within the first vibrational state, n ¼ 1, for both isotopes of chlorine, previously unavailable in HITRAN. The total
number of lines of ClO is now 11,501, as compared to 7230 in HITRAN2004.

The parameters gair and n for the pure-rotational transitions have been revisited. In HITRAN2004, the default values of
0.085 cm!1 atm!1 for gair and 0.5 for n were used for all pure rotational transitions. We have now adopted values based on
the J0 ¼ 5.5’J00 ¼ 4.5, J0 ¼ 13.5’J00 ¼ 12.5, and J0 ¼ 17.5’J00 ¼ 16.5 transitions measured by Oh and Cohen [205] and Bauer
et al. [206]. For all other transitions with J00o20.5, we used linear extrapolation of the above measurements:

gair ¼ 0:09206! 0:00111J00, (2)

n ¼ 0:5259þ 0:01768J00. (3)

Although this represents a rough approximation, it was deemed better than a constant value, especially for the case of
temperature dependence where the previous default value of 0.5 was somewhat low. For all transitions with J00X20.5,
default values of 0.075 cm!1 atm!1 and 0.6 were used for gair and n, respectively.

2.19. OCS (molecule 19)

In the HITRAN2004 edition, the intensities of the n3 band of the principal isotopologue (the region around 5mm) were
increased by 15.79% to match the average of the measurements reported by Régalia-Jarlot et al. [207] and Vander Auwera
and Fayt [208]. However, for the sake of consistency, such a scaling should also have been applied to the other Dv3 ¼ 1
transitions. They are the hot bands of n3 involving n1, n2 and 2n2 of the 16O12C32S, 16O12C34S, 16O12C33S, and 18O12C32S
isotopologues (622, 624, 623, and 822 in the old AFGL abbreviation), and the n3 band of 16O12C34S, 16O12C33S, and 18O12C32S.
This situation has been corrected in the current edition. The line intensities of the n3 fundamental of 16O13C32S in
HITRAN2004 were found to agree within 5% with the measurements of Vander Auwera and Fayt [208]. They were therefore
not changed.

Compared to the HITRAN2004 database, which gave about 1100 OCS transitions in the 3800–4200 cm!1 region for seven
bands (2n3 of the five isotopologues and the n2+2n3!n2 of 16O12C32S and 16O12C34S), substantial updates were made for
2008. The new database now includes 10,425 transitions of 51 bands involving the five isotopologues 16O12C32S, 16O12C34S,
16O13C32S, 16O12C33S, and 18O12C32S. Of these, two are forbidden bands, 15 are allowed cold bands arising from the ground
state, and the remaining 34 are hot bands arising from various vibrational states.

The line positions in this region were calculated using the effective rovibrational energy constants based on the global
analysis [209–213]. Although the accuracy in line position was reported to be 5"10!5 cm!1 [209], conservative values for
the HITRAN uncertainty criteria were assigned, depending on J value and line intensity.

Intensities were taken from new FTIR measurements [214,215] performed at JPL to support Venus studies. Sung et al.
[214] measured line intensities of the 2n3 band at 4101.387 cm!1, n1+2n2+n3 at 3937.421 cm!1, and 4n2+n3 at 4141.212 cm!1

of 16O12C32S. The new 2n3 band intensity of 6.315(13)"10!19 cm!1/(molecule cm!2) for 100% abundance of 16O12C32S was
within 1.3% of the average of two earlier measurements, 6.528(96)"10!19 and 6.27"10!19 cm!1/molecule cm!2,
respectively, by Bermejo et al. [216] and Naı̈m et al. [209]. The band intensities corresponding to 100% abundance of
isotopologue 16O12C32S for the n1+2n2+n3 and 4n2+n3 bands were also in similar agreement (1%) with those from Naı̈m et al.
[209]. Intensities of all the other 43 bands of the five isotopologues in this region were taken from the exhaustive work by
Toth et al. [215], in which many bands were measured for the first time. Uncertainties of the line intensities in this region
were adopted from measurement precisions, which range from 1% to 6% depending on the bands. However, conservative
values coupled with evaluation depending on the line intensities were assigned for the HITRAN uncertainty criteria. The line
intensities vary through five orders of magnitude, but very weak unassigned features were omitted from the database
pending further analysis.

The gself in the pure-rotation band have been updated using a recent improvement [217] to the work of Matton et al.
[218], while gair and gself in the rest of the database have been updated using a Padé approximation from Ref. [219]. Air-
pressure induced frequency shifts, d, for OCS were given for the first time based on the 2n3 work of Domenech et al. [220].

A separate file, with CO2-broadened half-widths rather than gair, based on the measurements of Bouanich et al. [221] in
the n1 band of OCS, is available from the authors [214,215] on request. This second database is intended to support remote
sensing of Venus at 2.5mm.

2.20. H2CO (molecule 20)

For formaldehyde, the major update in the infrared region for the line positions and line parameters involved the
complete replacement of the line list at 3.6mm and the addition of a list at 5.7mm [222]. Indeed both spectral regions are
now used for the infrared measurements of this molecule in the atmosphere [223,224]. The 5.7-mm region corresponds to
the n2 band together with three dark bands. In the 3.6-mm region, the lines belong to the n1 and n5 bands together with nine
dark bands.

The line positions were generated using the models and the parameters described in detail in Refs. [225–227] for the
5.7- and 3.6-mm regions, respectively. In addition, a consistent set of line intensity parameters was generated [222] for both
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the 5.7- and 3.6-mm spectral regions using high-resolution Fourier transform spectra recorded for the whole
1600–3200 cm!1 spectral range. The calculated band intensities derived for the 5.7- and 3.6-mm bands are in excellent
agreement with the values achieved recently by medium resolution band intensity measurements [228–230].

Details giving the description of the new database which involves 3713 and 31,796 transitions at 5.7 and 3.6mm,
respectively, are given in Table 9 of the accompanying paper [222]. As compared to the HITRAN2004 line list, which
involves only 1161 lines at 3.6mm, the quality of the line parameters is significantly improved in terms of the positions and
intensities.

A subsequent and complementary study dealing with measurements and calculations of formaldehyde self- and
N2-broadened half-width parameters is in progress.

2.21. HOCl (molecule 21)

Unchanged.

2.22. N2 (molecule 22)

Improvements to the HITRAN molecular nitrogen line parameters include intensities and half-widths. The new
intensities are based on the work of Goldman et al. [231], which used a semi-empirical Herman–Wallis formulation of the
vibration–rotation effects on the intensities with a final scaling based on observed spectra, and the work by Li and LeRoy
[232] who used ab initio methods. The values derived by Li and LeRoy [232] are very similar to those of Goldman et al.
[231]. However, it can be expected that the Herman–Wallis formulation of Goldman et al. yields less accurate values with
increasing J, and thus the ab initio matrix elements of Ref. [232] have been adopted for the HITRAN line listing. It should
also be noted that the HITRAN database is presently limited to only the (1–0) N2 band; Li and LeRoy [232] can provide line
parameters for other bands that may be of atmospheric importance. Li and LeRoy estimate that their intensities have an
absolute accuracy of about 1% and their new values are still being validated.

The new half-widths are based on available experimental and theoretical studies as described in Ref. [231]. Further
extensions are anticipated in the near future [231].

2.23. HCN (molecule 23)

The air-broadened half-width parameters have been recalculated using a polynomial expression derived in Ref. [233] by
fitting together parameters from n1 [234], n2 [235] and pure rotational [233] bands. This polynomial provides better
prediction of gair for the lines involving higher-lying rotational states. The new polynomial was applied for all the lines with
|m|p40 (the previous polynomial used in HITRAN2004 was applicable only up to m ¼ 29). The lines with |m|440 were
assigned a constant half-width parameter of 0.0518 cm!1 atm!1, which corresponds to the new polynomial value at
|m| ¼ 40.

2.24. CH3Cl (molecule 24)

In the region from 650 to 2650 cm!1 HITRAN2004 data have been completely replaced with lines from the work of
Nikitin et al. [236]. The line positions in this list are based on the significantly larger (than previously used) experimental
information from cold and hot bands. The standard deviation of about 3"10!4 cm!1 is close to the experimental precision
including perturbed series which were treated separately in previous works. The use of monoisotopic samples synthesized
in Ref. [236] was a major advantage. The line intensities are based on the approximate dipole moment parameters as no
precise analyses on the transition intensities have been carried out yet. Further intensity work is desirable. However, the
most pressing need for ground-based observations is a complete analysis of the 3.3mm region where weak CH3Cl features
are routinely encountered.

Note that there are four duplicate lines present in the new data set. These are in fact different lines but in some cases
(perturbed hot-band levels) the traditional quantum assignments based on approximate quantum numbers become
ambiguous. The line-shape parameters were filled in the same way as in HITRAN2004.

2.25. H2O2 (molecule 25)

The earlier hydrogen peroxide data previously reported in HITRAN for the n6 band in the 7.9-mm region have been
completely replaced, leading to improved line positions and intensities. The previous version of the H2O2 line list in the
spectral range of the n6 band involved only the twomain torsional components of the n6 band (in the n ¼ 0, t ¼ 1 and n ¼ 0,
t ¼ 3 torsional quantum numbers), and the line positions were not always accurate. The new list is more precise in terms of
line positions because the numerous resonances coupling the energy levels from the n62n2, n62n3, and n62ground
interacting torsion–vibrational states have now been taken into account [237]. The present linelist is also more complete
since it includes several hot torsion–vibration subbands of the n6 band (up to the n ¼ 2 torsional quantum numbers),
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together with contributing lines from the dark n2 and n3 torsion–vibration bands. As a result, the new linelist contains
many more lines (126983 instead of 100781) than the previous one.

In addition, the line intensities of the n6 band have been determined more accurately than the torsion–rotation bands
[238].

2.26. C2H2 (molecule 26)

In the period after the release of HITRAN2004, new bands of acetylene were added to HITRAN in the 2.5- and 3.8-mm
regions. The parameters (line positions and intensities) are from the work of Lyulin et al. [239] and Jacquemart et al. [240],
respectively.

Updates have also been included for the 12C2H2 isotopologue: spectroscopic data have been noticeably enhanced in nine
spectral regions, namely, in the regions around 3, 2.2, 1.9, 1.7, 1.5, 1.4, 1.3, 1.2, and 1mm. Among these regions, only those
data at 3 and 1.5mm were partially reported in the HITRAN database. The new line lists are described in detail in Refs.
[241,242]. Corrections of the updates of HITRAN for the 2.5- and 3.8-mm spectral regions of 12C2H2 have also been
performed and described in Ref. [241]. Table 6 summarizes the number of bands and transitions of the spectral regions now
available in the new HITRAN database, together with the intensity ranges and spectral domains. Fig. 5 is a plot of the 12C2H2

lines now available in HITRAN and illustrates the noticeable improvement the new data bring to the database, especially in
extending the coverage of the database towards shorter wavelengths.

These data summarize the improvements in current experimental spectroscopic knowledge on acetylene. Several of the
spectral regions involved are of atmospheric, planetary, astrophysical, and metrology interest (e.g. at 3, 2.2, 1.5, and 1mm).
A study of the 7.7-mm region, very useful for astrophysics applications, is in progress. For example, the acetylene molecule
has been observed in the circumstellar envelopes of carbon-rich stars. Using the Infrared Spectrograph (IRS) on board the
Spitzer Space Telescope (SST), Matsuura et al. [243] detected acetylene bands at 7 and 14mm in carbon-rich asymptotic
giant branch stars in the Large Magellanic Cloud. Around 7mm, HITRAN only contains line positions and intensities that
Vander Auwera calculated from his absolute measurements in the ðn4 þ n5Þ0þ band [244], for the rotational quantum
number J up to 35. But intensities measured in Ref. [244] for some lines of the (n4+n5)2 band are not reported in the
database. The temperature of interest for applications being around 500K [243], the knowledge of intensities in the
remaining hot bands is also important. In the quoted paper [243], Matsuura et al. could not reproduce the spectra that they
observed in their IRS-SST observations around 7mm because of the lack of data in HITRAN.

In addition, some values of the temperature-dependence exponents that were inadvertently set to zero in HITRAN2004
have been set to a default value of 0.75. The total number of lines for C2H2 has more than tripled, increasing from
3517 to 11340.
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Table 6
Summary of the bands and transitions now available for the 12C2H2 molecule.

Spectral region (mm) Number of bandsa Number of transitionsa Spectral range (cm!1) Intensity range (cm!1/
(molecule cm!2)) at
296K

Cold Hot Cold Hot

13.6b 1 5 150 1038 604–870 10!18–10!26

7.7b 1 0 71 0 1248–1415 10!19–10!22

5b 3 15 283 1212 1810–2255 10!22–10!25

3.8c 2 3 90 331 2499–2769 10!21–10!25

3b 2 0 125 0 3204–3359 10!19–10!21

3d 0 18 77e 1971 3139–3398 10!20–10!26

2.5c 4 5 450 720 3762–4226 10!21–10!27

2.2d 4 4 254 392 4421–4798 10!22–10!25

1.9d 7 0 539 0 5032–5567 10!24–10!26

1.7d 2 4 175 350 5692–6032 10!23–10!26

1.5b 2 2 129 224 6448–6685 10!20–10!24

1.5d 4 16 200 1443 6277–6865 10!23–10!28

1.4d 4 0 347 0 7042–7476 10!22–10!25

1.3f 1 0 51 0 7671–7791 10!25–10!24

1.2f 2 0 132 0 8407–8612 10!26–10!23

1.0f 3 1 193 108 9516–9890 10!25–10!22

a 12C13CH2 data are not in this table.
b HITRAN2004.
c HITRAN updates of 2007.
d New data from Ref. [241].
e New high-J lines added to the two cold bands already present in HITRAN2004.
f New data from Ref. [242].
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2.27. C2H6 (molecule 27)

The data for the n9 fundamental band of 12C2H6 in the 12-mm region, introduced with the 1982 edition of HITRAN [245],
have been completely replaced with a new line list including the n9, 3n4, n9+n4!n4, and n9+2n4!2n4 bands. It was generated
by Vander Auwera et al. [246] using a spectrum of the n9 band recorded at the Pacific Northwest National Laboratory [228],
and results from a global analysis of data involving the four lowest vibrational states of ethane [247] and measurements of
pressure-broadening parameters [248,249]. Note that the quantum number notation for representing rotation–torsion
states has been converted to HITRAN formalism. In Ref. [246], the levels are identified by the quantum numbers J, associated
with the total angular momentum of the molecule, K, its projection along the top 3-fold symmetry axis, ‘, the vibrational
angular momentum associated with the degenerate mode n9, and s ¼ 0–3, the torsional index. In HITRAN, the latter
is replaced by the symmetry species A1s (6), A2s (10), A3s (6), A4s (10), E1s (4), E2s (4), E3s (2), E4s (6), and Gs (16) in the
G36
+ extended permutation-inversion group (the nuclear-spin statistical weights are given in parentheses). Because the

symmetry occupies three characters only, the letter ‘s’ is omitted (all the allowed species are s-species): for instance, E1s
symmetry is given as ‘ E1’, and A1s+A2s is given as ‘A12’.

With this edition, estimated line parameters for the n12 band of 13C12CH6 have also been added. The line positions,
intensities and assignments (J, K, ‘, and symmetry in the Gþ

18 extended permutation-inversion group; see above) are from
the work of Kurtz et al. [250] andWeber et al. [251–253]. Since no line-shape parameter measurements have been reported
for this isotopologue, gair, gself, and n have been set to the values used for the main isotopologue [246].

In the HITRAN2004 edition, the empirical parameters for a number of Q branches were inadvertently excluded from the
n7 band around 3.3mmwhile updating one of the branches. The missing Q branches have now been restored. In addition, in
this update numerous multiplets (due to internal rotation tunneling) have been uniquely identified. Note that this band is
sorely in need of improvement, especially since the incorporation of the one Q branch in the n7 band around 3.3mm in
HITRAN2004 was inconsistent with the intensities of the rest of the band. However, similar to the situation for CH3Cl, there
are weak C2H6 features of P and R branch lines that should be included in future updates to support tropospheric
monitoring.

2.28. PH3 (molecule 28)

Phosphine is a constituent of the lower troposphere at very low and highly variable concentrations. Its sources could be
bacterial reduction of phosphate in decaying organic matter, its use as a fumigant, and processes related to corrosion
of metals containing phosphorus impurities. It is a significant contributor to the continuum opacity in the 5-mmwindow in
the atmosphere of Jupiter, which can be used as a means of probing the deeper atmospheric structure [254].

Spectral line parameters for new bands of PH3 have been added in the region from 2724 to 3602 cm!1, based on the
work of Butler et al. [255]. In addition, the collision-broadened parameters of the previously existing data in HITRAN from
770 to 2472 cm!1 have been updated using Ref. [255]. A recent global study of PH3 [256] has confirmed the need to improve
and normalize the calculated intensities for the bands at 5 and 3mm.

2.29. COF2 (molecule 29)

Unchanged.
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Fig. 5. Extension of data now available in HITRAN for the 12C2H2 isotopologue of acetylene.
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2.30. SF6 (molecule 30)

A totally new line list for sulfur hexafluoride has been created. This line list not only replaces the former n3 band that
was in HITRAN, but includes the n4 band and the n4+n6!n6 hot band.

The new 32SF6 line list has been calculated based upon the EH parameters resulting from the latest analyses. The intense n3
stretching fundamental has been the subject of numerous studies (see Ref. [257] for a review). The best fit results are from the
simultaneous analysis of various high-precision data (FTIR but also saturated absorption and IR–IR double resonance). The
resulting accuracy for line positions is estimated to be better than 0.001cm!1 up to J ¼ 100. Measurements of hot bands in this
region, although of great importance to atmospheric applications, are still to be investigated. The high line density and only
partial knowledge of the inactive n6 fundamental have thus far prevented a reliable analysis of the main hot band, namely
n3+n6!n6. The n4 and n4+n6!n6 bending region has been investigated in detail in Ref. [258]. Its much lower line density allows
an easier analysis compared to the crowded n3 region. For the n4 fundamental, the accuracy for line positions is%0.001cm!1 up
to J ¼ 100 and for the n4+n6!n6 hot band it is %0.002cm!1 up to J ¼ 65 (highest assigned lines). The accuracy may decrease
quickly when extrapolating to higher J values, although this is difficult to estimate quantitatively.

The determination of reliable dipole-moment parameters, allowing an accurate calculation of line intensities, is a
difficult problem in the case of heavy molecules like sulfur hexafluoride. In fact, most spectra do not show any isolated lines
but rather unresolved clusters of many transitions (up to several tens for high J values). The present calculation uses the
best known, although rather old, dipole-moment derivatives for the n3 and n4 fundamentals taken from Refs. [259,260]. In
the case of the n2 fundamental, the intensities of those lines that were listed in the previous HITRAN edition have been
checked and confirmed to be the same. The new calculation extends the measurements to somewhat higher J values for n3
and also includes the n4 and n4+n6!n6 bands and clearly represents a significant improvement. However, the accuracy in
intensities should be considered with some caution and may not be better than 20%, especially for the high-J regions.

Analyses and calculations have been performed with the Highly-spherical Top Data System (HTDS) software [261]. The
new line list for SF6 contains 2,889,065 transitions (actually reasonably reduced from the University of Burgundy original
list by applying an intensity cutoff of 10!30 cm!1/(molecule cm!2) at 296K), and covers the spectral range 580–996cm!1.
Since SF6 has low-lying vibrational modes, most applications will require hot bands that are not present in this list.
Therefore, it is the HITRAN policy to relegate this list to a supplemental folder, similar to what was done for SF6 and ClONO2

in the 2004 edition of HITRAN.

2.31. H2S (molecule 31)

Unchanged.

2.32. HCOOH (molecule 32)

This edition of HITRAN constitutes a major update of the information provided for formic acid: the 9-mm region has
been completely replaced [262,263], and there is the first inclusion of the 5.6-mm region [264]. These regions correspond to
the strong n6 and n3 bands, respectively. They are both used to probe this species in the troposphere [265,266]. The line
parameters for the n6 band of H12C16O16OH near 1105 cm!1 available in the editions of HITRAN earlier than 2004 [1]
originate from the work of Goldman and Gillis [267]. The sum of the line intensities was equal to 1.757"10!17 cm!1/
(molecule cm!2) at 296K, determined using a Fourier transform laboratory spectrum recorded at the University of Denver
[267]. With the 2004 edition of HITRAN, the n6 band line positions and intensities were improved according to the work of
Perrin et al. [268]. However, absolute line intensities were still derived by scaling the calculated total band intensity to the
sum of line intensities obtained in Ref. [267]. Recently, Vander Auwera et al. [262] reported absolute line intensities
measurements for the n6 and n8 bands using FTS, taking the dimer (HCOOH)2 into account in the analysis. They showed that
the intensities reported by Goldman and Gillis [267], and therefore in HITRAN, were a factor of about 2 lower than the
average of the other existing laboratory measurements, and also lower than theoretical calculations. Relying on results of
that work, Perrin and Vander Auwera generated a new list of line parameters and showed that it provides a vastly improved
modeling of the 9-mm spectral region of formic acid [263]. In the present edition of HITRAN, this list completely replaces
previous information for that spectral range of HCOOH.

Using high-resolution Fourier transform spectra of trans-HCOOH recorded at 5.6mm, Perrin et al. [264] carried out an
extensive analysis of the strong n3 fundamental band at 1776.83 cm!1, significantly perturbed by resonances due to
numerous dark bands. That work also involved the determination of absolute line intensities with an accuracy estimated to
15%. A list of line parameters was generated for the first time for this spectral region of trans-formic acid. Details can be
found in the accompanying article [264]. This line list has been incorporated into the present edition of HITRAN,
constituting the first inclusion of the 5.6-mm spectral region of formic acid into the database.

2.33. HO2 (molecule 33)

Unchanged.
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2.34. O (‘‘molecule’’ 34)

Unchanged.

2.35. ClONO2 (molecule 35)

Unchanged.

2.36. NO+ (molecule 36)

As was pointed out in López-Puertas et al. [269], there were significant inaccuracies in the line positions in HITRAN2004
when compared against MIPAS spectra.

Therefore, new line positions corresponding to J00p40 for all vibration bands of the nitric oxide ion in the database have
been generated using constants derived from a global fit of microwave [270], infrared [269,271,272], and UV spectra [273].
The excited electronic state in the UV data was fit to individual term values because of the perturbations. The resultant
Dunham constants are given in Table 7. The fit was performed using the DParFit program of LeRoy [274].

Lines with J00 greater than 40 were left untouched as the new constants cannot predict accurate frequencies for high-J
values. One should keep in mind that the HITRAN data above J00 ¼ 40 will still be of mediocre accuracy. Note that the
spectrum of this molecule is often used for upper atmospheric research and hence there is a large dynamic range in
intensities in the line list.

2.37. HOBr (molecule 37)

Hypobromous acid is formed in the Earth’s atmosphere by gas-phase reactions (e.g. HO2+BrO) [275] and also by
heterogeneous chemistry on aerosol particles (e.g. BrONO2+H2O) [276,277]. It is an important reservoir for active bromine
and is particularly important in the lower stratosphere where it can contain a significant part of the total bromine
[277,278]. It also plays an important role in the marine troposphere [279,280]. For atmospheric detection of HOBr, the far-
infrared is probably the most promising spectral region [281]. HOBr exists in two main isotopic species (HO79Br and
HO81Br) with nearly the same natural abundance and mass.

Recent high-resolution studies in the far- and mid-infrared [282,283] have been used to produce a new line list,
including (for the far-infrared region) the rotational dependence of the molecular dipole moment and also the rotational
transitions in the n3 ¼ 1 state. This line list was not available in time for the new edition of HITRAN; it will be included as an
update. A high-resolution line-by-line analysis of the near-infrared 2n1 bands of HO79Br and HO81Br is currently in progress
[284].

2.38. C2H4 (molecule 38)

Spectral line parameters for two isotopologues of ethylene, 12C2H4 and
13C12CH4, have been included in HITRAN as of the

2000 edition [285]. Recently, Rotger et al. [286] carried out an experimental and theoretical study of the n12 band of 12C2H4

near 6.93mm. Experimental line positions and intensites obtained using FTS were analyzed with a tensorial formalism
developed in Dijon, and a list of line parameters was generated for that band. The line positions, intensities, and lower state
energies are calculated using the results of that work. The values of gair, gself, and n are based on Refs. [287–290] (see [286]
for details). This n12 band line list has been added to the present edition.
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Table 7
Dunham constants (in cm!1) for the X1S+ ground electronic state of NO+.

Dunham coefficient Value (cm!1)

Y1,0 2376.5568(85)
Y2,0 !16.2603(46)
Y3,0 !0.00480(55)
Y0,1 1.997365(33)
Y1,1 !0.018804(22)
Y2,1 !4.90(53)"10!5

Y0,2 !5.580(99)"10!6

Y1,2 6.(3)"10!8

Note: Number in parentheses is approximately 2s.
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2.39. CH3OH (molecule 39)

A misassignment of the vibrational levels for the pure-rotation lines of methanol has been fixed (the levels previously
labeled as n1 are now correctly assigned to n12). At the same time, some corrections were made to the list by Xu [291]. These
corrections include deleting two duplicate lines, and updating two unresolved doublets.

2.40. CH3Br (molecule 40)

Methyl bromide is the major contributor to bromine in the stratosphere and the main organobromide in the lower
atmosphere. This molecule contributes significantly to ozone depletion since it is dissociated by UV radiation producing Br
radicals that catalyze the destruction of ozone [292]. These bromine atoms are 50–60 times more destructive of ozone than
the chlorine atoms coming from the chlorofluorocarbon compounds (CFCs) [293]. For this reason, since 2005 the use of
CH3Br is being phased out under the Montreal protocol.

CH3Br spectroscopic line parameters have been included for the first time in the 2008 HITRAN edition. Methyl bromide
is composed of 50.099% of 12CH3

79Br and 48.743% of 12CH3
81Br in natural abundance. Isotopologue numbers 1 and 2 have

been assigned for these two isotopologues, respectively. Two line lists of both isotopologues have been generated, one
around 10mm for the n6 band, and the other around 7mm for the interacting n2 and n5 bands. Several works published
recently for this molecule have been used to build these line lists. The works of Kwabia Tchana et al. have been used for the
line positions [294] and intensities [295] in the 7-mm spectral region. In the 10-mm spectral region, line positions,
intensities, self- and N2-broadened half-width parameters have been studied in Ref. [296]. The line list now present in
HITRAN is the one provided as supplementary material of Ref. [296]. The model for self- and N2-broadened half-width
parameters obtained in Ref. [296], showing a J and K rotational dependence, has been used both for the 10- and 7-mm
spectral regions. Because atmospheric needs are concerned with air-broadened half-width parameters, we deduced gair by
scaling gN2

by a factor of 0.96. Similar approximations have been done for many molecules in the various editions of the
HITRAN database. For the H2O molecule, air-broadened half-width parameters could be estimated by multiplying
N2-broadened half-width parameters by the value 0.9 as suggested in Refs. [297–299]. For CH3Cl, the ratio is found to be
around 0.96 due to the ratio gN2

=gO2
¼ 1:25 obtained by averaging measurements of CH3Cl from Refs. [300,301]. Note that

this result is quite similar to what has been proposed for ozone in Ref. [302]. Because CH3Br is similar to CH3Cl, the scaling
factor gair=gN2

¼ 0:96 has been used. This procedure, although approximate since gN2
=gO2

varies from line to line, is
expected to be precise within a few percent. Also, the temperature-dependence parameter n has been added in both
spectral regions, based on the N2-width temperature dependence measurements of Jacquemart and Tran [303] (see Eq. (5)
of Ref. [303]). Accuracies or details for the line-parameter calculation can be found in Refs. [294–296,303]. Note also that
line mixing has been observed and analyzed in the strong Q-branches between 220 and 300K [304,305]; line mixing
parameters are available on request to the authors [304,305].

2.41. CH3CN (molecule 41)

Line parameters of methyl cyanide (also called acetonitrile) have been included in HITRAN for the first time. A total of
3572 features between 890 and 946 cm!1 has been given for the n4 region near 920 cm!1. Published line positions and
intensities from Rinsland et al. [306] have been supplemented by unpublished measurements from the same data set, as
well as selected values from preliminary Hamitonian calculations. Only lines with intensities greater than 10!24 cm!1/
(molecule cm!2) at 296K have been included. The spectral region from 918.5 to 920.3 cm!1 (containing the Q branch and
the P1 and P2 manifolds) proved too dense to measure directly and so these parameters are represented by 326 calculated
transitions of n4. Some 2243 lines are given without quantum identifications; many are thought to be hot band lines
involving as yet unanalyzed upper-state levels of n4+n8. The lower state energy of these unidentified lines is set to
410.0000 cm!1. It should be noted that a number of hot-band lines are not included in the list; this is most noticeable at the
hot band Q branch near 924 cm!1.

Measured self-broadened half-width parameters were available [306], and identified lines with the same K quantum
number and the same or very close m were assigned approximately the same or interpolated values. The total number of
lines with self-broadening assigned in this manner is 2185. The air-broadened half-width parameters were estimated using
the reported N2 broadening [306] and extension to unmeasured identified lines in the same manner as self-broadening for
a total of 2279. Previously, Fabian et al. [307] reported N2 and O2 broadening of 11 microwave lines and the mean ratio of
their O2-broadened to the N2-broadened half-width parameters was 0.67. Assuming the standard 79% N2 and 20% O2 in air,
this implies that gair is 0.93 times the corresponding N2-broadened value, and so this factor was applied for the database.
For the lines lacking measured Lorentz half-width parameters for air and self-broadening, default values of 0.14 and
1.5 cm!1 atm!1 at 296K were used, respectively (obtained as an approximate average of measured values).

The measured N2 shifts [306], where available, were inserted for air shifts. Unmeasured pressure shifts have been set to
zero, the approximate average of the measured values. There are no measurements of the temperature dependence of the
Lorentz half-width in air and only one in N2 [308], so the default n was set to the single measured N2 value of 0.72.
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The error codes have been set based upon an uncertainty of five times the formal fitting uncertainty. The one exception
is the air-broadened Lorentz half-width parameter for which an additional 2% was added to account for the uncertainty in
the air-to-N2 ratio of these parameters. Furthermore, a calculation of the total internal partition function sum has been
performed for four isotopologues, 12CH3

12CN, 13CH3
12CN, 12CH3

13CN, and 13CH3
13CN, and those results have been made

available for the HITRAN compilation.

2.42. CF4 (molecule 42)

Tetrafluorocarbon (CFC-14) is a strong greenhouse gas of both anthropogenic and natural origin [309,310]. It has been
increasing in the atmosphere [311,312]. Its infrared spectrum is dominated by the intense n3 band at 1282 cm!1 [313].
However, high-resolution infrared spectroscopy of this molecule has received only a limited interest up to now with its
atmospheric identification first reported from balloon-borne measurements [313]. The previous editions of the HITRAN
database for CF4 were only represented by cross-sections (referenced as CFC 14) [314], but contained no line list.

The strongly absorbing n4 (around 15.8mm) and 2n4/n3 regions (around 7.3mm) have been recently reinvestigated,
thanks to several new Fourier transform infrared spectra recorded at a resolution of 0.003 cm–1. Following the previous
work of Gabard et al. [315], a simultaneous analysis of the ground state, n4, n3, 2n4 and n3!n3 bands was performed, making
use of the XTDS and SPVIEW programs [316] developed by the Dijon group. Compared to Ref. [310], the present work
extends the analysis to much higher J values (70 instead of 40 for n4 and 63 instead of 32 for the 2n4/n3 dyad). Absorption
intensities were used to fit the n4 and n3 dipole-moment derivatives and the results compare very well to the calculated
values of Papoušek et al. [317]. The details of this new analysis will be given in a forthcoming paper [318].

The analysis allowed for the first time the generation of a reliable line list for 12CF4 that is included in the present
HITRAN edition, tetrafluorocarbon becoming molecule number 42. The estimated precision for line positions is 0.001 cm!1,
up to J ¼ 60. The accuracy of intensities, however, should be considered with some care and may not be better than 20%,
especially for the high-J regions. The list covers the spectral ranges 600–670cm!1 (n4) and 1276–1290 cm!1 (2n4/n3).

The gair parameter was fixed to a constant value 0.078 cm!1 atm!1 (at 296K) based on the averaged value from tunable
diode laser experiments [319]. Note that at higher J values the air-broadened half-width parameters will most likely be
lower than this fixed value; further experiments are desirable. The temperature dependence of the air-broadened half-
width parameter, n, was set to 0.66 also based on Ref. [319]. There is no experimental (or theoretical) information about the
self-broadened half-width parameter; this parameter was estimated to be 0.08 cm!1 atm!1.

Just as for SF6 (Section 2.30 above), CF4 has low-lying vibrational modes and, as most applications will require hot bands
that are not present in this list, this line list has been placed into the supplemental folder.

3. Infrared cross-sections

Infrared cross-sections for this edition of the HITRAN compilation are listed in Table 8. This portion of the database
supplies cross-sections of molecules for which line-by-line spectral parameters are not yet available or are incomplete.
With the exception of the HFC-143a and HFC-125 cross-sections, all of the cross-sections are similar to those discussed by
Rothman et al. [1] and Massie and Goldman [320]. The cross-sections of each molecule are specified in separate files,
labeled with the chemical symbol of the molecule followed by an underscore and IRxx, where xx stands for the edition that
the data was introduced or updated. A file extension of .xsc is used. Files may have many temperature–pressure sets for
different spectral regions, as indicated by headers throughout the file. Headers indicate the molecule name, the range of
wavenumber for the band, number of data points, temperature (K) and pressure (Torr) of the laboratory measurements, the
maximum cross-section in the band (cm2 molecule!1), and the resolution (cm!1) of the measurements.

In previous editions, the cross-sections from the original laboratory data sets were set to zero if they were negative.
Wavelength ranges were chosen such that there are positive valued cross-sections in the far wings of the various bands at
all of the measurement temperatures. In HITRAN2008 we also provide complete original laboratory data. Original files of
HFC125 and HFC143a (discussed below) are included in a new subdirectory called ‘‘Original Data’’. Using these data
requires special care since there are instrumental distortions and wide intervals of oscillating values near zero that are
present in the data files.

Di Lonardo and Masciarelli [321] measured HFC-143a cross-sections at six temperatures between 203 and 293K, similar
to those of Smith et al. [322], and at a similar resolution of 0.03 cm!1. Integrated band intensities at room temperature and
at 203K differ by 6% and 16%, respectively, while the maximum cross-sections near the 1281 cm!1 Q branch differ by 30%.
This difference points out the need for additional measurements, especially of the strong Q-branch features of molecules
that play a predominant role in atmospheric remote sensing. The data of Smith et al. [322] are currently in the main
directory, while those of Di Lonardo and Masciarelli [321] are in the Original Data subdirectory. Both data sets should be
consulted until the differences are resolved.

Di Lonardo and Masciarelli [321] also measured HFC-125 cross-sections at six temperatures between 203 and 293K and
pressures between 50 and 800hPa at a resolution of 0.03 cm!1. Integrated band intensities of the Clerbaux et al. [323] and
Di Lonardo and Masciarelli [321] measurements agree to 3.4% when the same molecular bands are intercompared.
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Table 8
Summary of molecules represented by IR cross-section data in HITRAN.

Molecule Common Name Temperature
Range (K)

Pressure Range
(torr)

Number of
T,P sets

Spectral Coverage
(cm!1)

SF6 Sulfur hexafluoride 180–295 20–760 32 925–955

ClONO2 Chlorine nitrate 189–297 0–117 25 750–830
189–297 0–117 25 1260–1320
213–296 0 2 1680–1790

CCl4 Carbon tetrachloride 208–297 8–760 32 750–812

N2O5 Dinitrogen pentoxide 205–293 0 5 540–1380

HNO4 Peroxynitric acid 220 0 1 780–830

C2F6 Hexafluoroethane, CFC-116 181–296 25–760 43 1061–1165
181–296 25–760 43 1220–1285

CCl3F CFC-11 190–296 8–760 55 810–880
190–296 8–760 55 1050–1120

CCl2F2 CFC-12 190–296 8–760 52 850–950
190–296 8–760 52 1050–1200

CClF3 CFC-13 203–293 0 6 765–805
203–293 0 6 1065–1140
203–293 0 6 1170–1235

CF4 CFC-14 180–296 8–761 55 1250–1290

C2Cl2F3 CFC-113 203–293 0 6 780–995
203–293 0 6 1005–1232

C2Cl2F4 CFC-114 203–293 0 6 815–860
203–293 0 6 870–960
203–293 0 6 1030–1067
203–293 0 6 1095–1285

C2ClF5 CFC-115 203–293 0 6 955–1015
203–293 0 6 1110–1145
203–293 0 6 1167–1260

CHCl2F HCFC-21 296 1 1 785–840

CHClF2 HCFC-22 181–297 0–765 29 760–860
181–296 22–761 31 1070–1195
253–287 0 3 1060–1210
253–287 0 3 1275–1380

CHCl2CF3 HCFC-123 253–287 0 3 740–900
253–287 0 3 1080–1450
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Table 8 (continued )

Molecule Common Name Temperature
Range (K)

Pressure Range
(torr)

Number of
T,P sets

Spectral Coverage
(cm!1)

CHClFCF3 HCFC-124 287 0 1 675–715
287 0 1 790–920
287 0 1 1035–1430

CH3CCl2F HCFC-141b 253–287 0 3 710–790
253–287 0 3 895–1210
253–287 0 3 1325–1470

CH3CClF2 HCFC-142b 253–287 0 3 650–705
253–287 0 3 875–1265
253–287 0 3 1360–1475

CHCl2CF2CF3 HCFC-225ca 253–287 0 3 695–865
253–287 0 3 1010–1420

CClF2CF2CHClF HCFC-225cb 253–287 0 3 715–1375
CH2F2 HFC-32 203–297 0–750 17 995–1236

203–297 0–750 17 1385–1475

CHF2CF3 HFC–125 287 0 1 700–745
287 0 1 840–890
287 0 1 1060–1465

CHF2CHF2 HFC–134 203–297 0–750 9 600–1700

CFH2CF3 HFC–134a 253–287 0 3 815–865

190–296 20–760 32 1035–1130
190–296 20–760 33 1135–1340
253–287 0 3 935–1485

CF3CH3 HFC–143a 203–297 0–750 9 580–630
203–297 0–750 9 750–1050
203–297 0–750 9 1100–1500

CH3CHF2 HFC–152a 253–287 0 3 840–995
253–287 0 3 1050–1205
253–287 0 3 1320–1490

SF5CF3 Trifluoromethyl sulfur
pentafluoride

213–323 760 5 599–624
213–323 760 5 676–704
213–323 760 5 740–766
213–323 760 5 860–920
213–323 760 5 1150–1280
213–323 760 5 1280–2600

New or modified data added
after the HITRAN2004 edition
CH3C(O)OONO2 PAN (Peroxyacetal nitrate) 295 0.08 1 550–1450

295 0.08 1 1650–1901
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Infrared cross-section data for methyl cyanide (CH3CN) became available soon after the release of HITRAN2004, and
were first placed in the update section of the HITRAN web site. The source of the data is Rinsland et al. [324]. This molecule
is emitted from incomplete combustion of plant matter, for example in forest fires. It is relatively non-reactive in the
troposphere and is thus a tracer of troposphere-stratosphere transport.

Infrared cross-section data for peroxyacetyl nitrate-PAN (CH3C(O)OONO2) also became available after the release of the
HITRAN2004 database. The source of the data is Allen et al. [325,326]. This organic compound is formed in photochemical
smog, for example. It is thermally quite stable, and can contribute to pollution in areas away from its source. It is an irritant
to the eyes and breathing. HITRAN cross-sections have been used for measurements of short-lived organic compounds
including PAN and acetone in a biomass burning upper tropospheric plume measured by MIPAS-B limb emission spectra
[327] and in ACE Fourier transform spectrometer solar occultation spectra as reported by Coheur et al. [265].

Pressure-broadened (1 atm N2) laboratory spectra of benzene vapor (in natural abundance) were recorded at 278, 298,
and 323K, covering 600–6500 cm!1 [328] and added to HITRAN. The spectra were recorded at a resolution of 0.112 cm!1

using a commercial Fourier transform spectrometer. The pressure of each benzene vapor sample was measured using high
precision capacitance manometers, and a minimum of nine sample pressures were recorded for each temperature. The
samples were introduced into a temperature-stabilized static cell (19.94(1) cm pathlength) that was hard-mounted into the
spectrometer. From these data, a fitted composite spectrum was calculated for each temperature. The number density for
the three composite spectra was normalized to 296K. The spectra give the absorption coefficient (cm2molecule!1, naperian
units) as a function of wavenumber. From these spectra, integrated band intensities (cmmolecule!1 and atm!1 cm!2) for
intervals corresponding to the stronger benzene bands were calculated and were compared with previously reported
values. Error sources and estimated systematic (NIST Type-B) errors were found to be 3% for the stronger bands. The
measured absorption coefficients and integrated band intensities are useful for remote sensing applications such as
measurements of planetary atmospheres and assessment of the environmental impact of terrestrial oil fire emissions.

4. UV data sets

4.1. Line-by-line data

4.1.1. O2

A new line list has been created for the oxygen Herzberg bands. Corrections have also been made to the
Schumann–Runge line list.

The line list for the Herzberg bands (A3Sþ
u  X3S!

g , c
1S!

u  X3S!
g , A

03Du  X3S!
g ) is based on the data from Mérienne

et al. [329]. Fig. 6 shows an overall view of the bands. The file was created in a format different from former oxygen line lists
in HITRAN in order to distinguish different spin-components of the A03Du state of the Herzberg III band. The only difference
is in the presentation of the ‘‘global’’ quanta identification which is closer now to Class 3 of Table 3 in Ref. [1]. The new
format (in FORTRAN descriptors) is shown in the bottom of Table 9. The description of all the oxygen electronic energy
levels that are now in HITRAN, and their presentation in the new format, is also illustrated in Table 9.

In addition, the assignments of lines in the Schumann–Runge bands (B3S!
u  X3S!

g ) have been corrected from previous
editions of HITRAN. The associated parameters such as Einstein A-coefficients and statistical weights were recalculated.
The uncertainty and reference indices were fixed as well. The self-broadened half-width parameter field is used for
predissociation widths at zero pressure. In the previous editions of HITRAN, FWHM (full width at half maximum) was listed
for the Schumann–Runge bands, where now it has been changed to HWHM (half width at half maximum) to make it
consistent with the rest of HITRAN. The Schumann–Runge bands employ the new format for the ‘‘global’’ quanta
identifications.

The spectral range covered by the Herzberg bands is 34014–41261 cm!1, while the Schumann–Runge bands cover
44606–57028 cm!1. The total number of lines in the combined UV file is 15 466.

ARTICLE IN PRESS

Table 8 (continued )

Molecule Common Name Temperature
Range (K)

Pressure Range
(torr)

Number of
T,P sets

Spectral Coverage
(cm!1)

CH3CN Acetonitrile
(methyl cyanide) 276–324 760 3 624–784

276–324 760 3 867–1159
276–324 760 3 1175–1687
276–324 760 3 2217–2343
276–324 760 3 2786–3261
276–324 760 3 3881–4574

CHF2CF3 HFC–125 203–293 0–600 16 494–1503
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4.2. UV cross-sections

UV cross-sections for a number of molecules were introduced in the 2004 edition of HITRAN [1]. They were intended to
represent the most useful data for analysis of atmospheric measurements, including ground-based and satellite-based
spectroscopic measurements of the atmosphere [330]. Several updates are included in the present version of HITRAN, as
presented here. Several current studies with potential implications for near-future updates are also discussed.

4.2.1. O3

The Hartley–Huggins bands of ozone, adopted from Bass and Paur [331], with wavelength correction as discussed in [1]
remain the HITRAN2008 choice. There is now substantial indication that shifting to new cross-sections will soon be
warranted [332], with the likely choice being those from Ref. [333].

4.2.2. BrO
Bromine oxide cross-sections have been re-measured in the UV at five different temperatures between 203 and 298K

[334]. At present, these are being evaluated by research groups analyzing satellite spectra to see whether they present an
improvement over those currently used [335].

4.2.3. H2CO
It has recently been demonstrated [229] that the UV cross-sections for H2CO implemented in HITRANmay be as much as

20% too low, leading to overestimates of atmospheric H2CO by up to 20%. Other cross-section measurements currently in
use include those of Meller and Moortgat [336]. These data, however, are at lower spectral resolution and in air
wavelengths. For the present, corrections may be made to fitted atmospheric concentrations when the cross-sections of
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Fig. 6. Line intensities of the O2 Herzberg bands now in HITRAN.

Table 9
Energy levels for oxygen currently in HITRAN with their vibrational range and descriptors.

Electronic state X O u (range)

X3S!
g

X 0–2

a1Dg a 0–1

b1S!
g

b 0–2

A3Sþ
u

A 0–12

c1S!
u

c 2–19

A03Du
A0 1, 2, or 3 2–12

B3S!
u

B 0–19

FORTRAN descriptor A8 A3 I4

Note: X is the character describing the electronic state, O are values defining the spin components, and u is an integer specifying the vibrational level. Note
that the O-value is given only for states with La0.
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Ref. [337] are used. We recommend, however, that the cross-sections be systematically re-measured, simultaneously with
infrared line parameters using FTS.

4.2.4. IO
Cross-sections for iodine oxide [338], which have recently been successfully measured in the visible in both ground-

based and satellite spectra [339], have now been added to HITRAN.

4.2.5. SO2

Sulfur dioxide absorption cross-sections have already been extensively investigated in the 250 to 345nm region at room
temperature [340–354]. The temperature dependence was mainly investigated by looking at temperatures lower than
room temperature [349,350,353]. Only a couple of measurements have been performed at higher temperatures [343,344].
Recently, Danielache et al. [355] investigated the effect of the isotopes of S on the absorption cross-sections of SO2.
Measurements of the SO2 absorption cross-sections above 345nm are scarce: Manatt and Lane [348], who did a
compilation of absorption cross-sections existing in the literature, have digitalized the data of Sidebottom et al. [356] from
the figures in their paper. However, they introduced some modifications to the original data by shifting them by 0.67nm to
the red after comparison with peak positions from measurements performed by Clements [357] and by correcting for the
sinking baseline at the short wavelength side of the Sidebottom et al. data [356]. Sprague and Joens [358] report
measurements of SO2 in the 320–405nm region at a temperature of 298K and a resolution of 0.1 nm.

Recently, the SO2 absorption cross-sections were investigated in the 225–425nm region with FTS [359,360]. This study
provides cross-sections at relatively high spectral resolution (2 cm!1) with high wavelength accuracy at several
temperatures (298, 318, 338, and 358K). At room temperature, these data compare fairly well with the previous
measurements of Vandaele et al. [341], Bogumil et al. [353] and of Rufus et al. [347]. At higher temperatures, there are very
few literature data to compare with. These data, which cover a wide spectral interval and include temperature dependence,
have now been included in HITRAN.

4.2.6. Aromatic species
Aromatic hydrocarbons in the atmosphere are mainly of anthropogenic origin with major emissions due to motor

vehicles and solvent use. Minor sources are biomass burning and biogenic emissions. They play an important role in the
chemistry of tropospheric ozone and in urban air pollution problems because of their carcinogenic and mutagenic
properties [361,362]. However, the quality of atmospheric detections is not very good and is partly attributed to the poor
spectral resolution of the reference absorption cross-sections [363]. These species are also of importance for astronomical
studies: benzene has been detected in the north polar auroral region of Jupiter [364] and in the stratospheres of Jupiter and
Saturn [365] as well as in Titan’s atmosphere [366]. The need for laboratory spectroscopic data to study organic chemistry
in planetary atmospheres was highlighted in Refs. [367–369], in particular the low-temperature dependence in the UV
range.

Benzene (C6H6) is a planar oblate symmetric top molecule with D6h point group symmetry. Such a high symmetry
allows a total of thirty normal modes of vibration among which ten are doubly degenerate. The UV absorption spectrum of
benzene is attributed to the S1 (1B2u)’S0 (1A1g) electronic transition which is electronically forbidden but vibrationally
induced, and it is dominated by the 6

1

0 vibronic progression involving the symmetrical ring-breathing vibration n1. This
band system becomes more allowed and therefore more intense as the D6h symmetry is broken in methyl and dimethyl-
substituted benzene, i.e. toluene and xylene, respectively. The UV bands of benzene have been studied in the past by high-
resolution spectroscopy and their rotational structure has been completely analyzed by Okruss et al. [370].

Measurements of the absorption cross-sections of gaseous benzene (C6H6), toluene (C7H8), ortho-, meta-, and para-
xylene (or the three isomers of dimethyl-benzene C6H4(CH3)2) have been performed with a Fourier transform spectrometer
at the resolution of 1 cm!1 (MOPD ¼ 0.9 cm) over the 30 000–42000 cm!1 spectral range (238–333nm) and at
temperatures ranging from 253 to 293K. This systematic study of five organic molecules is presented in detail in Fally
et al. [371]. The complete data set comprises the absorption cross-sections of: (i) benzene at 253, 263, 273, 283 and 293K,
(ii) toluene at 263, 273, 283 and 293K, and (iii) the three isomers of xylene at 273, 283 and 293K. Wavenumbers are given
by increments of 0.2 cm!1 and the non-systematic error of the absorption cross-section (to which a total systematic
uncertainty of 8% must be added) is also reported in a separate column.

Compared to recent studies in the same UV region [372–374], this work provides absorption cross-sections
(cm2molecule!1) at several atmospheric temperatures with a better spectral resolution and an accurate wavelength
scale. It also proposes a parameterization for the temperature effect in support of tropospheric and astronomical studies.
These data, which appear in HITRAN for the first time, are also available in digital form from the web site of the Belgian
Institute for Space Aeronomy (http://www.aeronomie.be/spectrolab/).

5. Aerosol refractive indices

Refractive indices of water, ice, aqueous sulfuric and nitric acid, solid hydrates (i.e. nitric acid mono-, di-, and tri-
hydrate), organic non-volatile aerosol, and crustal material (e.g. quartz, hematite, and sand) in the previous version of
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HITRAN are discussed by Rothman et al. [1] and Massie and Goldman [320]. There is a separate ASCII file for each refractive-
index data set. The header of each file describes the data, cites a journal reference, specifies an email contact, and provides
the format specification of the tabulation. Additions to HITRAN2008 include indices of supercooled water, ice, and ternary
H2SO4/HNO3/H2O droplets at low temperatures.

Real and imaginary indices of supercooled water at 238, 252, 258, and 269K from 1101 to 4503 cm!1 are tabulated by
Wagner et al. [375]. These data are based upon expansion experiments conducted in the Karlsruhe AIDA coolable aerosol
chamber, followed by a Mie inversion technique. The influence of temperature on the optical constants was analyzed
previously only down to 274K. The supercooled optical constants are notably different from room temperature indices.
Fig. 7 compares room temperature indices of Downing and Williams [376] and the supercooled indices. Notable differences
are apparent in the O–H stretching mode near 3400 cm!1. These indices will help to improve retrievals of the ratio of
supercooled water droplets to ice crystals in mixed phase clouds.

Warren and Brandt [377] have updated the 1984 Warren [378] compilation of ice indices. Indices from 0.044 to
2"106mm at 266K are specified. There are notable differences in the two data sets. Imaginary indices in the 1.4- to 5-mm
range are larger or smaller than those in Ref. [378] by a factor up to two, depending upon the specific wavelength. In the
7- to 10-mm range, the new imaginary indices are 30% lower than those in Warren [378]. Temperature dependence is strong
in the 15–30mm range. While HITRAN includes the Clapp et al. [379] indices of ice from 2.5- to 12.5-mm in 10K steps from
130 to 210K, there is a need for newmeasurements in the 8–30mm range from 200 to 273K. The far-infrared 45mm peak in
Ref. [377] is stronger than in the 1984 compilation. Warren [377] recommends that researchers should consult the
formulas of Matzler [380] if they require microwave indices at temperatures other than 266K.

Ternary H2SO4/HNO3/H2O indices at low temperature are important in the interpretation of infrared spectra of Polar
Stratospheric Clouds (PSCs) since ternary solution droplets are observed in PSCs. Lund Myhre et al. [381] measured indices
between 12 and 81wt% H2SO4 from 220 to 300K. Lund Myhre et al. [382] measured indices of HNO3/H2O (at 30, 54, and
64wt% HNO3) and three mixtures of H2SO4/HNO3/H2O between 183 and 293K. Prior to Ref. [381], only two other sets of
measurements of the ternary indices, Norman et al. [383] and Biermann et al. [384], have been made, both of which are
included in the HITRAN database. HITRAN2008 contains all of these data sets since the measurement temperatures differ,
and because there are important differences in the indices of the various data sets. The specification of the indices of the
ternary mixture is considered incomplete, since there is not yet available a definitive way to combine (i.e. mix) the binary
HNO3/H2O and H2SO4/H2O indices to derive ternary indices for PSC studies.

6. Global data and software

There are some data that are needed to accompany HITRAN that are of a global nature. One such file, called
molparam.txt, is included with the compilation. It is a table listing the abundances, partition sum at 296K, and the
molecular weight of each of the isotopologues contained in HITRAN. There is also a file of all the sources used for the
parameters in HITRAN, as well as a file giving the partition sums at temperatures from 70 to 3000K.

As in previous editions, there is software, called JavaHAWKS, included in the compilation that provides a functional and
flexible set of tools for managing the database. This software can be installed on a wide set of platforms, running for
example Windows, UNIX, Solaris, LINUX, and Mac OS. However, the JavaHAWKS software has not yet been updated to be
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able to completely work on the newest additional molecules (beyond molecule 39). Likewise there are some new bands of
molecules that have not been implemented in the band selection feature.

In the future we plan to restructure the whole of the HITRAN compilation into an internet-based browsing platform.
A possible prototype for this system is the W@DIS database being produced by the IUPAC (International Union of Pure and
Applied Chemistry) Water Vapor task group [385].

7. Conclusions

The details of the updates and enhancements of the new HITRAN2008 compilation have been described. The
compilation consists of several parts: (1) the traditional high-resolution, line-by-line portion where fundamental
spectroscopic parameters required for calculation of radiative transfer are archived; (2) files of infrared cross-sections
primarily for large or heavy polyatomic molecules; (3) UV line-by-line parameters and cross-sections; (4) tables of aerosol
refractive indices; and (5) generalized tables and references that relate to HITRAN.

In addition to adding some new molecules, many vibration–rotation bands for the previously included species have
been updated or extended. One can highlight the vast improvement for H2O, CO2, O3, CH4, O2, and most of the trace-gas
species. Emphasis has been on increased accuracy and completeness of line positions, intensities, and line-shape
parameters. Recent atmospheric remote-sensing experiments have placed very demanding requirements on the accuracy
of intensities and broadening parameters. Indeed, various field experiments have now demonstrated the need (by lowering
the residuals between observed and simulated spectra) for more sophisticated models of line shape beyond the Voigt
profile currently accessible through HITRAN. This extension will be the topic of future editions of HITRAN.

Continuing efforts to improve and extend the database are ongoing. As critical new data become available, they will be
evaluated by the international HITRAN committee. These approved data will be posted as interim updates on the internet
before a total new edition is released. The compilation is free; access instructions can be obtained at http://
www.cfa.harvard.edu/HITRAN.
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Appendix A. Converting intensities from the JPL or CDMS catalogs to HITRAN intensities

This appendix provides users with the steps needed for the conversion of intensities between theHITRAN database [1] and
the JPL [148] or Cologne Database for Molecular Spectroscopy (CDMS) [149] spectral databases. The JPL and CDMS lists, which
are identical in their intensity formalisms, provide base-10 logarithms of the integrated intensity at 300K (in nm2MHz), while
HITRAN gives the intensity at 296K (in cm!1/(molecule cm!2)). Apart from these differences, there are certain differences in
the formalism of intensities and this appendix provides steps for the most accurate conversion. If accuracy better than 2% is not
required, it is fairly safe to use an approximation given in Section A.5. Some other intensity unit conversions are described in
the textbook of Bernath [386]. Appendix B gives definitions of some of the quantities in the databases.

A.1. Unit conversion

The JPL [148] and CDMS [149] catalogs use nm2MHz as units of intensity. In order to convert to HITRAN [1] units (cm!1/
(molecule cm!2)), one has to divide the JPL intensity (not its logarithm) by a factor related to the speed of light, namely
2.99792458"1010 cms!1. It should be recalled that the HITRAN units were constructed with application to atmospheric
transmission calculations in mind, hence the emphasis on writing the units as wavenumber per column density and not
simplifying it to the equivalent cmmolecule!1:

IJPLðcm!1=ðmolecule" cm!2ÞÞ ¼
IJPLðnm2 MHzÞ

2:99792458" 1018
. (A.1)

A.2. Isotopic abundance

The JPL and CDMS catalogs assume 100% abundance of every isotopologue, whereas the HITRAN database incorporates a
terrestrial abundance scaling. Therefore, one has to multiply the JPL (CDMS) intensity by the isotopologue abundance value
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(Ia) adopted by HITRAN. For the isotopic abundances used in HITRAN, see for example Table 1 in Ref. [387].

SJPL ¼ Ia
IJPLðnm2 MHzÞ

2:99792458" 1018
. (A.2)

A.3. Scaling of the partition sum

After conversion to cm!1/(molecule cm!2) and scaling by isotopic abundance, one needs to consider the intensity
defined in the JPL catalog, SJPL, which is given by

SJPLðTÞ ¼
g0JPL

QJPLðTÞ
A

8pcn20
e!hcE00=kBT ð1! e!hcn0=kBT Þ, (A.3)

where g0 is a statistical weight of the upper level and Q(T) is a total partition sum. The other terms in Eq. (A.3) are defined in
the appendix of Ref. [388]. The labels ‘‘JPL’’ refer to the fact that in some cases in the JPL and CDMS catalogs the common
factors are factored out in g0 and Q(T). This common factor is a state-independent statistical weight gi, which is not ignored
in the HITRAN database. Nevertheless it is obvious that

g0JPL
QJPLðTÞ

(
g0HIT

QHIT ðTÞ
. (A.4)

The use of the ‘‘E’’ refers to the fact that partition sums are not calculated exactly the same way in the JPL catalog and
HITRAN. Unlike HITRAN, the partition sums in the JPL catalog do not include the ‘‘vibrational’’ contribution in most cases.
However, this contribution may be significant for molecules possessing low vibrational modes. Therefore, it is
recommended that one should scale the intensities obtained at JPL to HITRAN formalism in the following manner:

SHIT ðTÞ ¼ SJPLðTÞ
QJPLðTÞ
QHIT ðTÞ

g0HIT
g0JPL

. (A.5)

Since 300K is the reference temperature in both the JPL and CDMS databases,

SHIT ð300Þ ¼ Ia
IJPLðnm2 MHzÞ

2:99792458" 1018

QJPLð300Þ
QHIT ð300Þ

g0HIT
g0JPL

. (A.6)

It is not always immediately obvious whether or not g0JPL ¼ g0HIT. Therefore, it is always useful to obtain a ratio between
partition sums in JPL and HITRAN at the same temperature and then round that ratio to an integer, which will be the ratio
between statistical weights in HITRAN and JPL.

The partition sums for HITRAN database are available in the file parsum.dat that is distributed with the database. The
partition sums for 296K are also listed in Table 1 of Ref. [387]. The partition sums (or their logarithms) for the JPL and CDMS
catalogs are provided in the following websites: http://spec.jpl.nasa.gov/ftp/pub/catalog/catdir.cat and http://www.ph1.
uni-koeln.de/vorhersagen/catalog/partition_function.html.

A.4. Temperature adjustment

All intensities in the JPL and CDMS catalogs are calculated at 300K, whereas HITRAN gives intensities at 296K. By
definition:

SHIT ð300Þ ¼
g0HIT

QHIT ð300Þ
A

8pcn20
e!hcE00=kB300ð1! e!hcn0=kB300Þ (A.7)

and

SHIT ð296Þ ¼
g0HIT

QHIT ð296Þ
A

8pcn20
e!hcE00=kB296ð1! e!hcn0=kB296Þ. (A.8)

Combining the last two equations one obtains

SHIT ð296Þ ¼ SHIT ð300Þ exp
hcE00

kB

1
300

!
1

296

! "# $
1! e!hcn0=kB296

1! e!hcn0=kB300

# $
QHIT ð300Þ
QHIT ð296Þ

, (A.9)

or using Eq. (A.5):

SHIT ð296Þ ¼ Ia
IJPLðnm2 MHzÞ

2:99792458" 1018

QJPLð300Þ
QHIT ð300Þ

g0HIT
g0JPL

exp
hcE00

kB

1
300

!
1

296

! "# $
1! e!hcn0=kB296

1! e!hcn0=kB300

# $
QHIT ð300Þ
QHIT ð296Þ

¼ Ia
IJPLðnm2 MHzÞ

2:99792458" 1018
exp

hcE00

kB

1
300

!
1

296

! "# $
1! e!hcn0=kB296

1! e!hcn0=kB300

# $
QJPLð300Þ
QHIT ð296Þ

g0HIT
g0JPL

. (A.10)
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A.5. Approximate temperature adjustment

It should be noted that in the majority of cases in the literature, step 3 is omitted and the last equation in step 4 can be
approximated by

SHIT ð296Þ ffi Ia
IJPLðnm2 MHzÞ

2:99792458" 1018
exp

hcE00

kB

1
300

!
1

296

! "# $
1! e!hcn0=kB296

1! e!hcn0=kB300

# $
300
296

! "n

, (A.11)

where n ¼ 1 for linear molecules and n ¼ 3/2 for nonlinear molecules. Sometimes an even coarser approximation is used:

SHIT ð296Þ ffi Ia
IJPLðnm2 MHzÞ

2:99792458" 1018
exp

hcE00

kB

1
300

!
1

296

! "# $
300
296

! "nþ1

. (A.12)

Appendix B. Definitions and units used in HITRAN

The HITRAN database does not strictly use the International System of Units (SI). The units have been chosen for
historical, transmission-algorithm structure, and/or instrument-related reasons. Table 10 gives the units for the
spectroscopic parameters and related constants in HITRAN.

References

[1] Rothman LS, Jacquemart D, Barbe A, Chris Benner D, Birk M, Brown LR, et al. The HITRAN 2004 molecular spectroscopic database. JQSRT
2005;96:139–204.

[2] Waters JW, Froidevaux L, Harwood RS, Jarnot RF, Pickett HM, Read WG, et al. The earth observing system microwave limb sounder (EOS MLS) on the
Aura Satellite. IEEE Trans Geosci Remote Sensing 2006;44:1075–92.

[3] Beer R. TES on the aura mission: scientific objectives, measurements, and analysis overview. IEEE Trans Geosci Remote Sensing 2006;44:1102–5.
[4] Fischer H, Birk M, Blom C, Carli B, Carlotti M, von Clarmann T, et al. MIPAS: an instrument for atmospheric and climate research. Atmos Chem Phys

2008;8:2151–88.
[5] Bernath PF, McElroy CT, Abrams MC, Boone CD, Butler M, Camy-Peyret C, et al. Atmospheric chemistry experiment (ACE): mission overview.

Geophys Res Lett 2005;32:5.
[6] Aumann HH, Chahine MT, Gautier C, Goldberg MD, Kalnay E, McMillin LM, et al. AIRS/AMSU/HSB on the aqua mission: design, science objectives,

data products, and processing systems. IEEE Trans Geosci Remote Sensing 2003;41:253–64.
[7] Clerbaux C, Hadji-Lazaro J, Turquety S, George M, Coheur PF, Hurtmans D, et al. The IASI/MetOp1 mission: first observations and highlights of its

potential contribution to GMES2. Space Res Today 2007;168:19–24.
[8] Crisp D, Atlas RM, Breon FM, Brown LR, Burrows JP, Ciais P, et al. The orbiting carbon observatory (OCO) mission. Adv Space Res 2004;34:700–9.
[9] Yokomizo M. Greenhouse gases observing SATellite (GOSAT) ground systems. Fujitsu Sci Techn J 2008;44:410–7.

[10] Hartmann JM, Boulet C, Robert D. Collisional effects on molecular spectra, laboratory experiments and models, consequences for applications.
Amsterdam: Elsevier; 2008.

ARTICLE IN PRESS

Table 10
Definitions and units associated with the HITRAN database.

Variable Definition Units Comments

Mol Molecule number Unitless Chronological assignment
Ia Isotopologue number Unitless Ordering based on terrestrial values of atoms given in Ref. [389]
n Transition wavenumber cm!1 Line position in vacuum
S Intensity cm!1/(molecule cm!2) At 296K
A Einstein A-coefficient s!1 See Ref. [387]
gair Air-broadened half-width cm!1 atm!1 HWHM at 296K
gself Self-broadened half-width cm!1 atm!1 HWHM at 296K
E00 Lower-state energy cm!1 Referenced to zero for lowest possible level
nair Temperature-dependence exponent of gair Unitless
dair Air pressure-induced shift cm!1 atm!1 At 296K
v0 ,v00 Upper- and lower-state ‘‘global’’ quanta Unitless See Table 3 of Ref. [1]
q0 ,q00 Upper- and lower-state ‘‘local’’ quanta Unitless See Table 4 of Ref. [1]
ierr Uncertainty indices Unitless See Table 5 of Ref. [1]
iref Reference indices Unitless Pointers to sources in HITRAN
g0 ,g00 Upper- and lower-state statistical weights Unitless Includes state-independent factors in HITRAN, see Ref. [387]

Other properties or constants
Q Partition sum Unitless Function of temperature
h Planck constant erg s 6.62606896(33)"10!27

c Speed of light cms!1 2.99792458"1010

kB Boltzmann constant ergK!1 1.3806504(24)"10!16

T Temperature K

L.S. Rothman et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 110 (2009) 533–572 563



[11] Shiba H, Sato S, Yamashita T, Kobayashi Y, Takami H. Detection of water vapor in T Tauri stars. Astrophys J Suppl Ser 1993;89:299–319.
[12] Tinetti G, Vidal-Madjar A, Liang MC, Beaulieu JP, Yung Y, Carey S, et al. Water vapour in the atmosphere of a transiting extrasolar planet. Nature

2007;448:169–71.
[13] Toth RA. Linelists of water vapor parameters from 500 to 8000 cm!1. See: /http://mark4sun.jpl.nasa.gov/data/spec/S.
[14] Coudert LH. Line frequency and line intensity analyses of water vapour. Mol Phys 1999;96:941–54.
[15] Coudert LH, Wagner G, Birk M, Baranov YI, Lafferty WJ, Flaud JM. The H2

16O molecule: line position and line intensity analyses up to the second
triad. J Mol Spectrosc 2008;251:339–57.

[16] Lodi L, Tennyson J. A line list of allowed and forbidden rotational transition intensities for water. JQSRT 2008;109:1219–33.
[17] Barber RJ, Tennyson J, Harris GJ, Tolchenov RN. A high-accuracy computed water line list. Mon Not R Astron Soc 2006;368:1087–94.
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