
Aerosol Files in HITRAN2024

1. Summary

A overview of the refractive indices included in HITRAN2024 [1] are summarized in Table 1. Please
refer to the Readme.txt for an explanation of how to download and use the aerosol data and programs
contained in hitran_ri.tar. If you have any questions, please contact Steven Massie at the Laboratory
for Atmospheric and Space Physics (LASP), University of Colorado, Boulder, Colorado (1-303-735-6583,
Steven.Massie@lasp.colorado.edu).

Table 1: Refractive indices included in HITRAN2024.

Compound Measurement ReferenceSpecifics
Water, ice, sodium chloride, sea salt,

water soluble aerosol, ammonium
sulfate, carbonaceous aerosol,
volcanic dust, sulfuric acid, meteoric
dust, quartz, hematite, sand

Room temperature, 0.2–40 µm [2]

Water 300 K, 10–5000 cm−1 [3]
Supercooled water 238–269 K, 1100–4500 cm−1 [4]
Ice 266 K, 0.04 µm–2 m [5]
Ice 130–210 K, 800–4000 cm−1 [6]
Sulfuric acid (H2SO4/H2O) 215 K, 499–6996 cm−1 [7]
Sulfuric acid (H2SO4/H2O) 273–298 K, 400–7500 cm−1 [8]
Nitric acid (HNO3) 223–293 K, 450–6500 cm−1 [9]
Ternary Solution (H2SO4/H2O/HNO3) 203–293 K, 450–6500 cm−1 [9]
NAD (nitric acid dihydrate) 160-190 K, 700–4700 cm−1 [10]
NAT (nitric acid trihydrate) 160 K, 711–4004 cm−1 [11]
Amorphous nitric acid (aNAM,

aNAD, aNAT) 153 K, 482–7000 cm−1 [12]
NAM (nitric acid monohydrate) 179 K, 482–6002 cm−1 [12]
NAD 184 K, 482–6981 cm−1 [12]
αNAT 181 K, 482–6989 cm−1 [12]
βNAT 196 K, 482–6364 cm−1 [12]
Saharan dust 0.30–0.95 µm [13]
Desert dust 3.0–15.0 µm [14]
Volcanic ash 0.45–25 µm [15]
Volcanic ash 690–32500 cm−1 [16]
Volcanic ash 0.4–18.9 µm [17]
SOA 0.23–1.2 µm [18]
SOA 0.23–1.2 µm [19]
SOA 0.31–0.65 µm [20]
SOA 0.31–0.53 µm [21]
Vanillic acid 0.27–0.60 µm [22]
Organic acids (Oxalic, malonic,

succinic, pinonic, pyruvic, phthalic) 0.25–1.1 µm [23]
Brown carbon 0.2–1.2 µm [24]
Burning vegetation 525–5000 cm−1 [25]

Continued on next page 1

mailto:Steven.Massie@lasp.colorado.edu


Table1 – Continued from previous page

Compound Measurement ReferenceSpecifics
Wood smoke 0.48–0.70 µm [26]
Humic acid 0.48–0.70 µm [26]
Burning vegetation 0.35–1.5 µm [27]
Carbon flame 0.4–0.7 µm, 296–773 K [28]
Flame soot 0.2–38 µm [29]
Minerals (clay, illite, kaolin,

montmorillonite) 2.5–200 µm [30]
Minerals (granite, montmorillonite) 5–40 µm [31]
Kaolinite 0.25–46 µm [32]
Quartz 0.25–15 µm [33]
Titan tholins 0.02–920 µm [34]
Titan tholins 0.2–1 µm [35]
Titan tholins 2.5–25 µm [36]
Pluto aerosol 0.27–2 µm [37]
KCl 0.22–166 µm [30]
ZnS 0.22–166 µm [30]
SiO2 (amorphous) 6.6–487 µm, 10–300 K [38]
SiO2 (crystalline) 6.25–10 µm, 300–928 K [39]
Al2O3 7.8–200 µm [40]
FeO 0.2–500 µm [41]
CaTiO3 (Perovskite) 2.0–500 µm [42]
Fe2O3 0.1–1000 µm [43]
Fe2SiO4 (Fayalite) 0.4–10 µm [44]
Fe2SiO4 (Fayalite) 2–10000 µm [45]
MgAl2O4 (annealed) 1.6–6825 µm [46]
MgAl2O4 (natural) 2.0–10000 µm [46]
Mg2SiO4 0.19–948 µm [47]
MgSiO3 0.2–500 µm [47]
TiO2 (Rutile) 0.47–36.2 µm [48]
TiO2 (Anastase) 2.0–5843 µm [48]
TiO2 (Brookite) 2.0–5843 µm [49]

Supplementary data
Water and Ice 0.67–2.5 µm, imaginary [50]
Saharan Dust 0.35–0.65 µm [51]
SOA 0.375 and 0.632 µm, various radical sources [52]
SOA 0.532 µm, various cases [53]
Diesel Soot 0.45–10 µm [30]
Sulfuric acid (H2SO4/H2O) 200–300 K, 825–4700 cm−1 [54]
Sulfuric acid (H2SO4/H2O) 183–293 K, 2–23 µm [55]
Sulfuric acid (H2SO4/H2O) Room temperature, 75 and 90% H2SO4 [56]
Nitric acid (H2SO4/HNO3) 213–293 K, 2–23 µm [55]
Nitric acid (H2SO4/HNO3) 220 K, 754–4700 cm−1 [57]
Nitric acid (H2SO4/HNO3) Room temperature, 2–40 µm [58]
Sulfuric and Nitric acids Room temperature, 6–11 µm [59]
Titan organic haze 0.532 µm (single wavelength) [60]
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