Summary of the tool for the CO₂ line-mixing package

The package contains the FORTRAN code (calculation of the absorption coefficients for CO₂-air taking (or not) into account the line-mixing effects). This package is based on the HITRAN 2016 database and format (Gordon et al., JQSRT (2017) doi:10.1016/j.jqsrt.2017.06.038). Note that the calculation is being done only for the first 10 isotopologues of CO_2 at the moment.

References: Lamouroux et al., JQSRT 111 (2010), 2321-2331; Lamouroux et al., JQSRT 151(2015), 88-96; and references therein. Please cite these references along with HITRAN2016 paper if you are using the present tools.

The structure of the package is the following:

/>Data new (output): contains the spectroscopic files, "bandinfo.dat", and the elements of the relaxation matrix files.

/>The main code used for the calculation of CO₂-air absorption coefficient : *LM_calc_CO2_2017.for* and the file "parameters.inc" that contains some parameters used in the main code.

/>>> Input parameters:

- sgmin, sgmax, dsg [cm⁻¹]: Min and Max wavenumbers and step of the calculation
 sTotMax [cm⁻¹/(molecule.cm⁻²) at 296K]: Total band intensity cut-off
- \blacktriangleright xCO₂ [no unit] : CO₂ molefraction
- ➤ xH₂O [no unit] : H₂O molefraction
- ➤ Temp [K] : Temperature of the calculation
- > Ptot [atm] : Total pressure
- MixFull = Switch to full diagonalization line-mixing
- MixSDV = Switch to a Speed-dependent Voigt profile !!Note that at the moment the full diagonalization line-mixing is not possible when a Speeddependent Voigt profile is used.!!

/>>> Output results:

- AbsV : Absorption Coefficient neglecting LineMixing (assuming Voigt Line-Shapes) (cm⁻¹)
- > AbsY : Absorption Coefficient predicted using the First (Order Line-Mixing Approximation) (cm⁻¹)
- > AbsW : Absorption Coefficient predicted using Full (diagonalization Line-Mixing) (cm⁻¹)

From all these files, the absorption coefficient can be calculated using the main code "LM_calc_CO2_2017.for" and the file "parameters.inc" that must be included into the directory. In output of this main code are the frequency, the absorption coefficient using a Voigt (or Speed-dependent Voigt) profile (no line-mixing), the absorption coefficient using a Voigt (or Speed-dependent Voigt) profile using the first order approximation (Y coefficients) for linemixing, and the absorption coefficient using a Voigt profile and the full relaxation matrix. Note that at the moment no Speed-dependent Voigt profile can be used when the full relaxation matrix is used for the line-mixing calculation.