ALIAS DESCRIPTION
Acerboni et al. (2001) Acerboni, G., J. A. Beukes, N. R. Jensen, J. Hjorth, G. Myhre, C. J. Nielsen, and J. K. Sundet (2001), Atmospheric degradation and global warming potentials of three perfluoroalkenes, Atmospheric Environment, 35(24), 4113-4123.
Allen et al. (2004) G. Allen, J.J. Remedios, D.A. Newnham, K.M. Smith, P.S. Monks. High resolution mid-infrared cross-sections for peroxyacetyl nitrate (PAN) vapour. Atmospheric Chemistry and Physics Discussions 2004;4:5656-5681.
Allen et al. (2005a) G. Allen, J. J. Remedios, D. A. Newnham, K. M Smith, P. S. Monks. Improved midinfrared cross-sections for peroxyacetyl nitrate (PAN) vapour. Atmospheric Chemistry and Physics 2005;5:47-56. doi:10.5194/acp-5-47-2005.
Allen et al. (2005a) renorm Data from Ref. [667], with the baseline fixed and cross sections renormalized
Allen et al. (2005b) renorm Data from Ref. [669], with the baseline fixed and cross sections renormalized
Allen et al. (2011) N. D. C. Allen, J. J. Harrison, P. F. Bernath. Acetonitrile (CH3CN) infrared absorption cross sections in the 3 μm region. Journal of Quantitative Spectroscopy and Radiative Transfer 2011;112:1961-1966. doi:10.1016/j.jqsrt.2011.04.001.
Andersen et al. (2004) Andersen, M. P. S., M. D. Hurley, T. J. Wallington, F. Blandini, N. R. Jensen, V. Librando, and J. Hjorth (2004), Atmospheric chemistry of CH3O(CF2CF2O)(n)CH3 (n=1-3): Kinetics and mechanism of oxidation initiated by Cl atoms and OH radicals, IR spectra, and global warmin potentials, J. Phys. Chem. A, 108(11), 1964-1972.
Andersen et al. (2008) Andersen, M. P. S., E. J. K. Nilsson, O. J. Nielsen, M. S. Johnson, M. D. Hurley, and T. J. Wallington (2008), Atmospheric chemistry of trans-CF3CHCHCl: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3, Journal of Photochemistry and Photobiology A: Chemistry, 199(1), 92-97.
Andersen et al. (2010) Andersen, M. P. S., S. P. Sander, O. J. Nielsen, D. S. Wagner, T. J. Sanford, and T. J. Wallington (2010), Inhalation anaesthetics and climate change, Br. J. Anaesth., 105(6), 760-766.
Andersen et al. (2012a) Andersen, M. P. S., O. J. Nielsen, T. J. Wallington, B. Karpichev, and S. P. Sander (2012a), Assessing the Impact on Global Climate from General Anesthetic Gases, Anesth. Analg., 114(5), 1081-1085.
Andersen et al. (2012b) Andersen, M. P. S., R. L. Waterland, S. P. Sander, O. J. Nielsen, and T. J. Wallington (2012b), Atmospheric chemistry of CxF2x+1CH=CH2 (x=1, 2, 4, 6 and 8): Radiative efficiencies and global warming potentials, J. Photochem. Photobiol. A-Chem., 233, 50-52.
Ballard et al. (1988) J. Ballard, W. B. Johnston, M. R. Gunson, P. T. Wassell. Absolute Absorption Coefficients of ClONO2 Infrared Bands at Stratospheric Temperatures. Journal of Geophysical Research 1988;93:1659-1665. doi:10.1029/JD093iD02p01659.
Bravo et al. (2010a) Bravo, I., Y. Diaz-de-Mera, A. Aranda, K. Smith, K. P. Shine, and G. Marston (2010a), Atmospheric chemistry of C(4)F(9)OC(2)H(5) (HFE-7200), C(4)F(9)OCH(3) (HFE-7100), C(3)F(7)OCH(3) (HFE-7000) and C(3)F(7)CH(2)OH: temperature dependence of the kinetics of their reactions with OH radicals, atmospheric lifetimes and global warming potentials, Physical Chemistry Chemical Physics, 12(19), 5115-5125.
Bravo et al. (2010b) Bravo, I., A. Aranda, M. D. Hurley, G. Marston, D. R. Nutt, K. P. Shine, K. Smith, and T. J. Wallington (2010b), Infrared absorption spectra, radiative efficiencies, and global warming potentials of perfluorocarbons: Comparison between experiment and theory, J. Geophys. Res.-Atmos., 115.
Chance and Orphal (2011) K. Chance and J. Orphal. Revised ultraviolet absorption cross sections of H2CO for the HITRAN database. Journal of Quantitative Spectroscopy and Radiative Transfer 2011;112:1509-1510. doi:10.1016/j.jqsrt.2011.02.002.
Clerbaux et al. (1993) C. Clerbaux, R. Colin, P.C. Simon, C. Granier. Infrared Cross Sections and Global Warming Potentials of 10 Alternative Hydrohalocarbons. Journal of Geophysical Research 1993;98:10491-10497. doi:10.1029/93JD00390.
D'Anna et al. (2005) D'Anna, B., S. R. Sellevag, K. Wirtz, and C. J. Nielsen (2005), Photolysis study of perfluoro-2-methyl-3-pentanone under natural sunlight conditions, Environmental Science & Technology, 39(22), 8708-8711.
Davis et al. (2016) Davis, M. E., F. Bernard, M. R. McGillen, E. L. Fleming, and J. B. Burkholder. UV and infrared absorption spectra, atmospheric lifetimes, and ozone depletion and global warming potentials for CCl2FCCl2F (CFC-112), CCl3CClF2 (CFC-112a), CCl3CF3 (CFC-113a), and CCl2FCF3 (CFC-114a). Atmospheric Chemistry and Physics 2016;16:8043-8052. doi:10.5194/acp-16-8043-2016.
Di Lonardo et al. (2000) G. Di Lonardo, G. Masciarelli. Infrared cross-sections and integrated absorption intensities of HFC-125 and HFC-143a. Journal of Quantitative Spectroscopy and Radiative Transfer 2000;66:129-142. doi:10.1016/S0022-4073(99)00212-5.
Etminan et al. (2014) Etminan, M., E. J. Highwood, J. C. Laube, R. McPheat, G. Marston, K. P. Shine, and K. M. Smith. Infrared Absorption Spectra, Radiative Efficiencies, and Global Warming Potentials of Newly-Detected Halogenated Compounds: CFC-113a, CFC-112 and HCFC-133a. Atmosphere 2014;5:473-483. doi:10.3390/atmos5030473.
Fally et al. (2009) S. Fally, M. Carleer, A. C. Vandaele. UV Fourier transform absorption cross sections of benzene, toluene, meta-, ortho-, and para-xylene. Journal of Quantitative Spectroscopy and Radiative Transfer 2009;110:766-782. doi:10.1016/j.jqsrt.2008.11.014.
Freeman et al. (1984) D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson. High Resolution Absorption Cross Sections Measurements of SO2 at 213 K in the Wavelength Region 172-240 nm. Planetary and Space Science 1984;32:1125-1134. doi:10.1016/0032-0633(84)90139-9.
Godin et al. (2016) Godin, P. J., A. Cabaj, S. Conway, A. C. Hong, K. Le Bris, S. A. Mabury, and K. Strong. Temperature-dependent absorption cross-sections of perfluorotributylamine. Journal of Molecular Spectroscopy 2016;323:53-58. doi:10.1016/j.jms.2015.11.004.
Godin et al. (2017a) Paul J. Godin, Alex Cabaj, Li-Hong Xu, Karine Le Bris, Kimberly Strong. A study of the temperature dependence of the infrared absorption cross-sections of 2,2,3,3,3-pentafluoropropanol in the range of 298-362 K. Journal of Quantitative Spectroscopy and Radiative Transfer 2017;186:150-157. doi:10.1016/j.jqsrt.2016.05.031.
Godin et al. (2017b) Paul J. Godin, Karine Le Bris, Kimberly Strong. Conformational analysis and global warming potentials of 1,1,1,3,3,3-hexafluoro-2-propanol from absorption spectroscopy. Journal of Quantitative Spectroscopy & Radiative Transfer 2017;doi:10.1016/j.jqsrt.2017.04.031.
Gohar et al. (2004) Gohar, L. K., G. Myhre, and K. P. Shine (2004), Updated radiative forcing estimates of four halocarbons, J. Geophys. Res.-Atmos., 109(D1).
Gonzalez et al. (2015) Gonzalez, S., E. Jimenez, B. Ballesteros, E. Martinez, and J. Albaladejo. Hydroxyl radical reaction rate coefficients as a function of temperature and IR absorption cross sections for CF3CH=CH2 (HFO-1243zf), potential replacement of CF3CH2F (HFC-134a). Environmental Science and Pollution Research 2015;22:4793-4805. doi:10.1007/s11356-014-3426-2.
Harrison (2013) J.J. Harrison. Infrared absorption cross sections for trifluoromethane. Journal of Quantitative Spectroscopy and Radiative Transfer 2013;130:359-364. doi:10.1016/j.jqsrt.2013.05.026.
Harrison (2015a) J.J. Harrison. New and improved infrared absorption cross sections for dichlorodifluoromethane (CFC-12). Atmospheric Measurement Techniques 2015;8:3197-3207. doi:10.5194/amt-8-3197-2015.
Harrison (2015b) J.J. Harrison. Infrared absorption cross sections for 1,1,1,2-tetrafluoroethane. Journal of Quantitative Spectroscopy and Radiative Transfer 2015;151:210-216. doi:10.1016/j.jqsrt.2014.09.023.
Harrison (2016) J.J. Harrison. New and improved infrared absorption cross sections for chlorodifluoromethane (HCFC-22). Atmospheric Measurement Techniques 2016;9:2593-2601. doi:10.5194/amt-9-2593-2016.
Harrison and Bernath (2012) J. J. Harrison, P. F. Bernath. Mid- and long-wave infrared absorption cross sections for acetonitrile. Journal Of Quantitative Spectroscopy and Radiative Transfer 2012;113:221-225. doi:10.1016/j.jqsrt.2011.11.003.
Harrison et al. (2010a) J. J. Harrison, P. F. Bernath. Infrared absorption cross sections for propane (C3H8) in the 3 μm region. Journal of Quantitative Spectroscopy and Radiative Transfer 2010;111:1282-1288. doi:10.1016/j.jqsrt.2009.11.027.
Harrison et al. (2010b) J. J. Harrison, N. D. C. Allen, P. F. Bernath. Infrared absorption cross sections for ethane (C2H6) in the 3 μm region. Journal of Quantitative Spectroscopy and Radiative Transfer 2010;111:357-363. doi:10.1016/j.jqsrt.2009.09.010.
Harrison et al. (2011a) J. J. Harrison, N. D. C. Allen, P. F. Bernath. Infrared absorption cross sections for acetone (propanone) in the 3 μm region. Journal of Quantitative Spectroscopy and Radiative Transfer 2011;112:53-58. doi:10.1016/j.jqsrt.2010.08.011.
Harrison et al. (2011b) J. J. Harrison, N. Humpage , N. D. C. Allen, A. M. Waterfall, P. F.Bernath, J. J. Remedios. Mid-infrared absorption cross sections for acetone (propanone). Journal of Quantitative Spectroscopy and Radiative Transfer 2011;112:457-464. doi:10.1016/j.jqsrt.2010.09.002.
Harrison et al. (2012) J. J. Harrison, N. D. C. Allen, P. F. Bernath. Infrared absorption cross sections for methanol. Journal Of Quantitative Spectroscopy and Radiative Transfer 2012;113:2189-2196. doi:10.1016/j.jqsrt.2012.07.021.
Harrison et al. (2016) J.J. Harrison, C.D. Boone, P.F. Bernath. New and improved infra-red absorption cross sections and ACE-FTS retrievals of carbon tetrachloride (CCl4). Journal of Quantitative Spectroscopy and Radiative Transfer 2016;doi:10.1016/j.jqsrt.2016.04.025.
Hashikawa et al. (2004) Hashikawa, Y., M. Kawasaki, R. L. Waterland, M. D. Hurley, J. C. Ball, T. J. Wallington, M. P. S. Andersen, and O. J. Nielsen (2004), Gas phase UV and IR absorption spectra of CxF2x+1CHO (x=1-4), J. Fluor. Chem., 125(12), 1925-1932.
Hermans et al. (2009) C. Hermans, A. C. Vandaele, S. Fally. Fourier Transform measurements of SO2 absorption cross sections: I. Temperature dependence in the 23 500 - 29 000 cm-1 (345-425 nm) region. Journal of Quantitative Spectroscopy and Radiative Transfer 2009;110:756-765. doi:10.1016/j.jqsrt.2009.01.031.
Highwood and Shine (2000) Highwood, E. J., and K. P. Shine (2000), Radiative forcing and global warming potentials of 11 halogenated compounds, J. Quant. Spectrosc. Radiat. Transf., 66(2), 169-183.
Hopfner et al. (2009) Experimental cross sections at 296 K from Ref. [671]
Hopfner et al. (2009) scaled Experimental cross sections at 296 K from Ref. [671] scaled to simulate spectrum at 218 K
Hurley et al. (2007) Hurley, M. D., J. C. Ball, and T. J. Wallington (2007), Atmospheric chemistry of the Z and E isomers of CF3CF=CHF; Kinetics, mechanisms, and products of gas-phase reactions with Cl atoms, OH radicals, and O-3, J. Phys. Chem. A, 111(39), 9789-9795.
Inoue et al. (2008) Inoue, Y., M. Kawasaki, T. J. Wallington, and M. D. Hurley (2008), Atmospheric chemistry of CF(3)CH(2)CF(2)CH(3) (HFC-365mfc): Kinetics and mechanism of chlorine atom initiated oxidation, infrared spectrum, and global warming potential, Chemical Physics Letters, 462(4-6), 164-168.
Johnson et al. (2010) Johnson, Timothy J., Profeta, Luisa T M, Sams, Robert L., Griffith, David W T, Yokelson, Robert L.. An infrared spectral database for detection of gases emitted by biomass burning. Vibrational Spectroscopy 2010;53(1):97-102. doi:10.1016/j.vibspec.2010.02.010.
Le Bris and Graham (2015) Le Bris, K., and L. Graham. Quantitative comparisons of absorption cross-section spectra and integrated intensities of HFC-143a. Journal of Quantitative Spectroscopy & Radiative Transfer 2015;151:13-17. doi:10.1016/j.jqsrt.2014.09.005.
Le Bris and Strong (2010) K. Le Bris, K. Strong. Temperature-dependent absorption cross-sections of HCFC-142b. Journal of Quantitative Spectroscopy and Radiative Transfer 2010;111:364-371. doi:10.1016/j.jqsrt.2009.10.005.
Le Bris et al. (2011) Karine Le Bris, Roopa Pandharpurkar, Kimberly Strong. Mid-infrared absorption cross-sections and temperature dependence of CFC-113. Journal of Quantitative Spectroscopy and Radiative Transfer 2011;112:1280-1285. doi:10.1016/j.jqsrt.2011.01.023.
Le Bris et al. (2012) Karine Le Bris, James McDowell, Kimberly Strong. Measurements of the infrared absorption cross-sections of HCFC-141b (CH3CFCl2). Journal of Quantitative Spectroscopy and Radiative Transfer 2012;113:1913-1919. doi:10.1016/j.jqsrt.2012.05.004.
Le Bris et al. (2017) Karine Le Bris, Jasmine DeZeeuw, Paul J. Godin, Kimberly Strong. Cis- and trans-perfluorodecalin: Infrared spectra, radiative efficiency and global warming potential. Journal of Quantitative Spectroscopy and Radiative Transfer 2017;203:538-541. doi:10.1016/j.jqsrt.2017.01.011.
Le Bris et al. (2018) Karine Le Bris, Jasmine DeZeeuw, Paul J. Godin, Kimberly Strong. Infrared absorption cross-sections, radiative efficiency and global warming potential of HFC-43-10mee. Journal of Molecular Spectroscopy 2018;348:64-67. doi:10.1016/j.jms.2017.06.004.
Mashino et al. (2000) Mashino, M., M. Kawasaki, T. J. Wallington, and M. D. Hurley (2000), Atmospheric degradation of CF3OCF=CF2: Kinetics and mechanism of its reaction with OH radicals and Cl atoms, J. Phys. Chem. A, 104(13), 2925-2930.
Massie et al. (1985) S. T. Massie, A. Goldman, D. G. Murcray, J. C. Gille. Approximate absorption cross sections of F12, F11, ClONO2, N2O5, HNO3, CCl4, CF4, F21, F113, F114, and HNO4. Applied Optics 1985;24:3426-3427. doi:10.1364/AO.24.003426.
May and Friedl (1993) R. D. May, R. R. Friedl. Integrated band intensities of HO2NO2 at 220 K. Journal of Quantitative Spectroscopy and Radiative Transfer 1993;50:257-266. doi:10.1016/0022-4073(93)90076-T.
McDaniel1991/Massie1991 Data from two sources: Ref. [616] and Ref. [617]
McGillen et al. (2015) McGillen, M. R., F. Bernard, E. L. Fleming, and J. B. Burkholder. HCFC-133a (CF3CH2Cl): OH rate coefficient, UV and infrared absorption spectra, and atmospheric implications. Geophysical Research Letters 2015;42:6098-6105. doi:10.1002/2015gl064939.
Myhre et al. (1999) Myhre, G., C. J. Nielsen, D. L. Powell, and F. Stordal (1999), Infrared absorption cross section, radiative forcing, and GWP of four hydrofluoro(poly)ethers, Atmospheric Environment, 33(27), 4447-4458.
Nemtchinov and Varanasi (2004) V. Nemtchinov, P. Varanasi. Absorption cross-sections of HFC-134a in the spectral region between 7 and 12 μm. Journal of Quantitative Spectroscopy and Radiative Transfer 2004;83:285-294. doi:10.1016/S0022-4073(02)00356-4.
Nielsen et al. (2002) Nielsen, O. J., F. M. Nicolaisen, C. Bacher, M. D. Hurley, T. J. Wallington, and K. P. Shine (2002), Infrared spectrum and global warming potential of SF5CF3, Atmospheric Environment, 36(7), 1237-1240.
Nielsen et al. (2007) Nielsen, O. J., M. S. Javadi, M. P. S. Andersen, M. D. Hurley, T. J. Wallington, and R. Singh (2007), Atmospheric chemistry of CF3CF=CH2: Kinetics and mechanisms of gas-phase reactions with Cl atoms, OH radicals, and O-3, Chemical Physics Letters, 439(1-3), 18-22.
Nilsson et al. (2009) Nilsson, E. J. K., O. J. Nielsen, M. S. Johnson, M. D. Hurley, and T. J. Wallington (2009), Atmospheric chemistry of cis-CF3CHCHF: Kinetics of reactions with OH radicals and O3 and products of OH radical initiated oxidation, Chemical Physics Letters, 473(4-6), 233-237.
Ninomiya et al. (2000) Ninomiya, Y., M. Kawasaki, A. Guschin, L. T. Molina, M. J. Molina, and T. J. Wallington (2000), Atmospheric chemistry of n-C3F7OCH3: Reaction with OH radicals and Cl atoms and atmospheric fate of n-C3F7OCH2O((center dot)) radicals, Environmental Science & Technology, 34(14), 2973-2978.
Osterstrom et al. (2012) Osterstrom, F. F., O. J. Nielsen, M. P. S. Andersen, and T. J. Wallington (2012), Atmospheric chemistry of CF3CH2OCH3: Reaction with chlorine atoms and OH radicals, kinetics, degradation mechanism and global warming potential, Chemical Physics Letters, 524, 32-37.
Oyaro et al. (2004) Oyaro, N., S. R. Sellevag, and C. J. Nielsen (2004), Study of the OH and Cl-initiated oxidation, IR absorption cross-section, radiative forcing, and global warming potential of four C-4-hydrofluoroethers, Environmental Science & Technology, 38(21), 5567-5576.
Oyaro et al. (2005) Oyaro, N., S. R. Sellevag, and C. J. Nielsen (2005), Atmospheric chemistry of hydrofluoroethers: Reaction of a series of hydrofluoro ethers with OH radicals and Cl atoms, atmospheric lifetimes, and global warming potentials, J. Phys. Chem. A, 109(2), 337-346.
Papadimitriou and Burkholder (2016)Papadimitriou, V. C., and J. B. Burkholder. OH Radical Reaction Rate Coefficients, Infrared Spectrum, and Global Warming Potential of (CF3)(2)CFCH=CHF (HFO-1438ezy(E)). Journal of Physical Chemistry A 2016;120:6618-6628. doi:10.1021/acs.jpca.6b06096.
Reed and Hodges (2015) Z. Reed, J. Hodges. Self- and air-broadened cross sections of ethane (C2H6) determined by frequency-stabilized cavity ring-down spectroscopy near 1.68 µm. J Quant Spectrosc Radiat Transf 2015;159:87-93. doi:10.1016/j.jqsrt.2015.03.010.
Rinsland et al. (2003) C. P. Rinsland, S. W. Sharpe, R. L. Sams. Temperature-dependent cross-sections in the thermal infrared bands of SF5CF3. Journal of Quantitative Spectroscopy and Radiative Transfer 2003;82:483-490. doi:10.1016/S0022-4073(03)00172-9.
Rinsland et al. (2005) C. P. Rinsland, S. W. Sharpe, R. L. Sams. Temperature-dependent infrared absorption cross-sections of methyl cyanide (acetonitrile). Journal of Quantitative Spectroscopy and Radiative Transfer 2005;96:271-280. doi:10.1016/j.jqsrt.2005.03.004.
Rinsland et al. (2008) C. P. Rinsland, V. M. Devi, T. A. Blake, R. L. Sams, S. Sharpe, L. Chiou. Quantitative measurement of integrated band intensities of benzene vapor in the mid-infrared at 278, 298, and 323 K. Journal of Quantitative Spectroscopy and Radiative Transfer 2008;109:2511-2522. doi:10.1016/j.jqsrt.2008.04.007.
Robson et al. (2006) Robson, J. I., L. K. Gohar, M. D. Hurley, K. P. Shine, and T. J. Wallington (2006), Revised IR spectrum, radiative efficiency and global warming potential of nitrogen trifluoride, Geophys. Res. Lett., 33(10).
Rodrigues et al. (2016) Rodriguez, A., I. Bravo, D. Rodriguez, M. Tajuelo, Y. Diaz-de-Mera, and A. Aranda. The environmental impact of unsaturated fluoroesters: atmospheric chemistry towards OH radicals and Cl atoms, radiative behavior and cumulative ozone creation. Rsc Advances 2016;6:21833-21843. doi:10.1039/c6ra00630b.
Rodriguez et al. (2014) Rodriguez, A., D. Rodriguez, A. Moraleda, I. Bravo, E. Moreno, and A. Notario. Atmospheric chemistry of HFE-7300 and HFE-7500: Temperature dependent kinetics, atmospheric lifetimes, infrared spectra and global warming potentials. Atmospheric Environment 2014;96:145-153. doi:10.1016/j.atmosenv.2014.07.033.
Ryan and Nielsen (2010) Ryan, S. M., and C. J. Nielsen (2010), Global Warming Potential of Inhaled Anesthetics: Application to Clinical Use, Anesth. Analg., 111(1), 92-98.
Sellevag et al. (2004a) Sellevag, S. R., T. Kelly, H. Sidebottom, and C. J. Nielsen (2004a), A study of the IR and UV-Vis absorption cross-sections, photolysis and OH-initiated oxidation of CF3CHO and CF3CH2CHO, Physical Chemistry Chemical Physics, 6(6), 1243-1252.
Sellevag et al. (2004b) Sellevag, S. R., C. J. Nielsen, O. A. Sovde, G. Myhre, J. K. Sundet, F. Stordal, and I. S. A. Isaksen (2004b), Atmospheric gas-phase degradation and global warming potentials of 2-fluoro ethanol, 2,2-difluoroethanol, and 2,2,2-trifluoroethanol, Atmospheric Environment, 38(39), 6725-6735.
Sellevag et al. (2007) Sellevag, S. R., B. D'Anna, and C. J. Nielsen (2007), Infrared Absorption Cross-Sections and Estimated Global Warming Potentials of CF3CH2CH2OH, CHF2CF2CH2OH, CF3CF2CH2OH, CF3CHFCF2CH2OH, and CF3CF2CF2CH2OH, Asian Chemistry Letters(11), 33-40.
Sharpe et al. (2004) Sharpe, Steven W. Johnson, Timothy J. Sams, Robert L. Chu, Pamela M. Rhoderick, George C. Johnson, Patricia A.. Gas-Phase Databases for Quantitative Infrared Spectroscopy. Applied Spectroscopy 2004;58:1452-1461. doi:10.1366/0003702042641281.
Shine et al. (2005) Shine, K. P., L. K. Gohar, M. D. Hurley, G. Marston, D. Martin, P. G. Simmonds, T. J. Wallington, and M. Watkins (2005), Perfluorodecalin: global warming potential and first detection in the atmosphere, Atmospheric Environment, 39(9), 1759-1763.
Sihra et al. (2001) Sihra, K., M. D. Hurley, K. P. Shine, and T. J. Wallington (2001), Updated radiative forcing estimates of 65 halocarbons and nonmethane hydrocarbons, J. Geophys. Res.-Atmos., 106(D17), 20493-20505.
Smith et al. (1996) K. Smith, D. Newnham, M. Page, J. Ballard, G. Duxbury. Infrared Band Strengths and Absorption Cross-Sections of HFC-32 Vapour. Journal of Quantitative Spectroscopy and Radiative Transfer 1996;56:73-82. doi:10.1016/0022-4073(96)00019-2.
Smith et al. (1998) K. Smith, D. Newnham, M. Page, J. Ballard, G. Duxbury. Infrared Absorption Cross-sections and Integrated Absorption Intensities of HCF-134 and HCF-143a Vapour. Journal of Quantitative Spectroscopy and Radiative Transfer 1998;59:437-451. doi:10.1016/S0022-4073(97)00114-3.
Sondergaard et al. (2007) Sondergaard, R., O. J. Nielsen, M. D. Hurley, T. J. Wallington, and R. Singh (2007), Atmospheric chemistry of trans-CF3CH = CHF: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O-3, Chemical Physics Letters, 443(4-6), 199-204.
Tereszchuk and Bernath (2011) K. A. Tereszchuk, P. F. Bernath. Infrared absorption cross sections for acetaldehyde (CH3CHO) in the 3 μm region. Journal of Quantitative Spectroscopy and Radiative Transfer 2011;112:990-993. doi:10.1016/j.jqsrt.2010.12.003.
Varanasi et al. (1994) P. Varanasi, V. Nemtchinov, Z. Li, A. Cherukuri. Spectral Absorption-coefficient Data on HCFC-22 and SF6 for Remote Sensing Applications. Journal of Quantitative Spectroscopy and Radiative Transfer 1994;52:323-332. doi:10.1016/0022-4073(94)90162-7.
Varanasi priv. comm. (2000) P. Varanasi. Private communications
Wagner and Birk (2003) G. Wagner, M. Birk. New Infrared Spectroscopic Database for Chlorine Nitrate. Journal of Quantitative Spectroscopy and Radiative Transfer 2003;82:443-460. doi:10.1016/S0022-4073(03)00169-9.
Wagner and Birk (2016) G. Wagner, M. Birk. New infrared spectroscopic database for bromine nitrate. Journal of Molecular Spectroscopy 2016;326:95-105. doi:10.1016/j.jms.2016.03.007.
Wallington et al. (1994) Wallington, T. J., M. D. Hurley, J. C. Ball, T. Ellermann, O. J. Nielsen, and J. Sehested (1994), Atmospheric chemistry of HFC-152 - UV absorption-spectrum of CH2FCFHO2 radicals, kinetics of the reaction CH2FCFHO2+NO- CH2FCRFO+NO2, and fate of the alkoxy radical CH2FCFHO, J. Phys. Chem., 98(21), 5435-5440.
Wallington et al. (2000) Wallington, T. J., W. F. Schneider, I. Barnes, K. H. Becker, J. Sehested, and O. J. Nielsen (2000), Stability and infrared spectra of mono-, di-, and trichloromethanol, Chemical Physics Letters, 322(1-2), 97-102.
Wallington et al. (2004) Wallington, T. J., M. D. Hurley, O. J. Nielsen, and M. P. S. Andersen (2004), Atmospheric chemistry of CF3CFHCF2OCF3 and CF3CFHCF2OCF2H: Reaction with Cl atoms and OH radicals, degradation mechanism, and global warming potentials, J. Phys. Chem. A, 108(51), 11333-11338.
Wallington et al. (2009) Wallington, T. J., M. D. Hurley, and O. J. Nielsen (2009), The radiative efficiency of HCF(2)OCF(2)OCF(2)CF(2)OCF(2)H (H-Galden 1040x) revisited, Atmospheric Environment, 43(27), 4247-4249.
Wallington et al. (2016) Wallington, T. J., B. P. Pivesso, A. M. Lira, J. E. Anderson, C. J. Nielsen, N. J. Andersen, and O. Hodnebrog. CH3Cl, CH2Cl2, CHCl3, and CCl4: Infrared spectra, radiative efficiencies, and global warming potentials. Journal of Quantitative Spectroscopy & Radiative Transfer 2016;174:56-64. doi:10.1016/j.jqsrt.2016.01.029.
Waterfall2004/Harrison2011 Data originally from Ref. [662] is scaled in Ref. [661]
Waterland et al. (2005) Waterland, R. L., M. D. Hurley, J. A. Misner, T. J. Wallington, S. M. L. Melo, K. Strong, R. Dumoulin, L. Castera, N. L. Stock, and S. A. Mabury (2005), Gas phase UV and IR absorption spectra of CF3CH2CH2OH and F(CF2CF2)(x)CH2CH2OH (x=2, 3, 4), J. Fluor. Chem., 126(9-10), 1288-1296.
Wetzel et al. (2010) G. Wetzel, H. Oelhaf, O. Kirner, R. Ruhnke, F. Friedl-Vallon, A. Kleinert, G. Maucher, H. Fischer, M. Birk, G. Wagner, A. Engel. First remote sensing measurements of ClOOCl along with ClO and ClONO2 in activated and deactivated Arctic vortex conditions using new ClOOCl IR absorption cross sections. Atmospheric Chemistry and Physics 2010;10:931-945. doi:10.5194/acp-10-931-2010.
Young et al. (2006) Young, C. J., M. D. Hurley, T. J. Wallington, and S. A. Mabury (2006), Atmospheric lifetime and global warming potential of a perfluoropolyether, Environmental Science & Technology, 40(7), 2242-2246.
Young et al. (2009a) Young, C. J., M. D. Hurley, T. J. Wallington, and S. A. Mabury (2009a), Atmospheric chemistry of perfluorobutenes (CF3CFCFCF3 and CF3CF2CFCF2): Kinetics and mechanisms of reactions with OH radicals and chlorine atoms, IR spectra, global warming potentials, and oxidation to perfluorocarboxylic acids, Atmospheric Environment, 43(24), 3717-3724.
Young et al. (2009b) Young, C. J., M. D. Hurley, T. J. Wallington, and S. A. Mabury (2009b), Atmospheric chemistry of CF3CF2H and CF3CF2CF2CF2H: Kinetics and products of gas-phase reactions with Cl atoms and OH radicals, infrared spectra, and formation of perfluorocarboxylic acids, Chemical Physics Letters, 473(4-6), 251-256.
Zou et al. (2004) Q. Zou, C. Sun, V. Nemtchinov, P. Varanasi. Thermal infrared absorption cross-sections of C2F6 at atmospheric temperatures. Journal of Quantitative Spectroscopy and Radiative Transfer 2004;83:215-221. doi:10.1016/S0022-4073(02)00353-9.